
1 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

[MS-RDPEUSB]:

Remote Desktop Protocol: USB Devices Virtual Channel
Extension

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications

Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

 Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit

www.microsoft.com/trademarks.
 Fictitious Names. The example companies, organizations, products, domain names, email

addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other

than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards

specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Revision Summary

Date
Revision
History

Revision
Class Comments

4/23/2010 0.1 Major First Release.

6/4/2010 1.0 Major Updated and revised the technical content.

7/16/2010 2.0 Major Updated and revised the technical content.

8/27/2010 3.0 Major Updated and revised the technical content.

10/8/2010 4.0 Major Updated and revised the technical content.

11/19/2010 5.0 Major Updated and revised the technical content.

1/7/2011 6.0 Major Updated and revised the technical content.

2/11/2011 7.0 Major Updated and revised the technical content.

3/25/2011 7.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/6/2011 7.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 7.1 Minor Clarified the meaning of the technical content.

9/23/2011 8.0 Major Updated and revised the technical content.

12/16/2011 9.0 Major Updated and revised the technical content.

3/30/2012 10.0 Major Updated and revised the technical content.

7/12/2012 11.0 Major Updated and revised the technical content.

10/25/2012 12.0 Major Updated and revised the technical content.

1/31/2013 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 13.0 Major Updated and revised the technical content.

11/14/2013 13.0 None
No changes to the meaning, language, or formatting of the

technical content.

2/13/2014 13.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 13.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 14.0 Major Significantly changed the technical content.

10/16/2015 14.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 14.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/1/2017 14.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/15/2017 15.0 Major Significantly changed the technical content.

3 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Date
Revision
History

Revision
Class Comments

9/12/2018 16.0 Major Significantly changed the technical content.

4/7/2021 17.0 Major Significantly changed the technical content.

6/25/2021 18.0 Major Significantly changed the technical content.

4 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Table of Contents

1 Introduction .. 8
1.1 Glossary ... 8
1.2 References .. 9

1.2.1 Normative References ... 9
1.2.2 Informative References ... 9

1.3 Protocol Overview (Synopsis) .. 10
1.3.1 USB Devices Virtual Channel Protocol .. 11

1.3.1.1 Channel Setup Sequence ... 11
1.3.1.2 New Device Sequence ... 11
1.3.1.3 I/O Sequence ... 12

1.4 Relationship to Other Protocols .. 12
1.5 Prerequisites and Preconditions .. 13
1.6 Applicability Statement ... 13
1.7 Versioning and Capability Negotiation ... 13
1.8 Vendors-Extensible Fields .. 13
1.9 Standards Assignments ... 13

2 Messages ... 14
2.1 Transport .. 14
2.2 Message Syntax ... 14

2.2.1 Shared Message Header (SHARED_MSG_HEADER) ... 14
2.2.2 Interface Manipulation ... 16
2.2.3 Interface Manipulation Exchange Capabilities Interface 16

2.2.3.1 Interface Manipulation Exchange Capabilities Request
(RIM_EXCHANGE_CAPABILITY_REQUEST) ... 16

2.2.3.2 Interface Manipulation Exchange Capabilities Response
(RIM_EXCHANGE_CAPABILITY_RESPONSE).. 17

2.2.4 Device Sink Interface .. 17
2.2.4.1 Add Virtual Channel Message (ADD_VIRTUAL_CHANNEL) 17
2.2.4.2 Add Device Message (ADD_DEVICE) .. 18

2.2.5 Channel Notification Interface .. 19
2.2.5.1 Channel Created Message (CHANNEL_CREATED) 19

2.2.6 USB Device Interface .. 20
2.2.6.1 Cancel Request Message (CANCEL_REQUEST) .. 20
2.2.6.2 Register Request Callback Message (REGISTER_REQUEST_CALLBACK) 21
2.2.6.3 IO Control Message (IO_CONTROL) ... 21
2.2.6.4 Internal IO Control Message (INTERNAL_IO_CONTROL) 22
2.2.6.5 Query Device Text Message (QUERY_DEVICE_TEXT) 23
2.2.6.6 Query Device Text Response Message (QUERY_DEVICE_TEXT_RSP) 23
2.2.6.7 Transfer In Request (TRANSFER_IN_REQUEST) .. 24
2.2.6.8 Transfer Out Request (TRANSFER_OUT_REQUEST) 24
2.2.6.9 Retract Device (RETRACT_DEVICE) ... 25

2.2.7 Request Completion Interface .. 25
2.2.7.1 IO Control Completion (IOCONTROL_COMPLETION) 26
2.2.7.2 URB Completion (URB_COMPLETION) .. 26
2.2.7.3 URB Completion No Data (URB_COMPLETION_NO_DATA) 27

2.2.8 USB_RETRACT_REASON Constants ... 28
2.2.9 TS_URB Structures ... 28

2.2.9.1 Common Structures .. 28
2.2.9.1.1 TS_URB_HEADER .. 28
2.2.9.1.2 TS_USBD_INTERFACE_INFORMATION .. 29
2.2.9.1.3 TS_USBD_PIPE_INFORMATION ... 30

2.2.9.2 TS_URB_SELECT_CONFIGURATION ... 30
2.2.9.3 TS_URB_SELECT_INTERFACE ... 31
2.2.9.4 TS_URB_PIPE_REQUEST .. 31

5 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

2.2.9.5 TS_URB_GET_CURRENT_FRAME_NUMBER ... 32
2.2.9.6 TS_URB_CONTROL_TRANSFER ... 32
2.2.9.7 TS_URB_BULK_OR_INTERRUPT_TRANSFER .. 33
2.2.9.8 TS_URB_ISOCH_TRANSFER ... 33
2.2.9.9 TS_URB_CONTROL_DESCRIPTOR_REQUEST ... 34
2.2.9.10 TS_URB_CONTROL_FEATURE_REQUEST .. 35
2.2.9.11 TS_URB_CONTROL_GET_STATUS_REQUEST .. 35
2.2.9.12 TS_URB_CONTROL_VENDOR_OR_CLASS_REQUEST 36
2.2.9.13 TS_URB_CONTROL_GET_CONFIGURATION_REQUEST 37
2.2.9.14 TS_URB_CONTROL_GET_INTERFACE_REQUEST .. 37
2.2.9.15 TS_URB_OS_FEATURE_DESCRIPTOR_REQUEST .. 37
2.2.9.16 TS_URB_CONTROL_TRANSFER_EX .. 38

2.2.10 TS_URB_RESULT Structures ... 39
2.2.10.1 Common Structures .. 39

2.2.10.1.1 TS_URB_RESULT_HEADER.. 39
2.2.10.1.2 TS_USBD_INTERFACE_INFORMATION_RESULT 39
2.2.10.1.3 TS_USBD_PIPE_INFORMATION_RESULT ... 40

2.2.10.2 TS_URB_SELECT_CONFIGURATION_RESULT .. 41
2.2.10.3 TS_URB_SELECT_INTERFACE_RESULT .. 42
2.2.10.4 TS_URB_GET_CURRENT_FRAME_NUMBER_RESULT 42
2.2.10.5 TS_URB_ISOCH_TRANSFER_RESULT ... 43

2.2.11 USB_DEVICE_CAPABILITIES .. 43
2.2.12 USB IO Control Code ... 45

2.2.12.1 IOCTL_INTERNAL_USB_RESET_PORT .. 45
2.2.12.2 IOCTL_INTERNAL_USB_GET_PORT_STATUS ... 45
2.2.12.3 IOCTL_INTERNAL_USB_GET_HUB_COUNT ... 45
2.2.12.4 IOCTL_INTERNAL_USB_CYCLE_PORT .. 45
2.2.12.5 IOCTL_INTERNAL_USB_GET_HUB_NAME ... 46
2.2.12.6 IOCTL_INTERNAL_USB_GET_BUS_INFO .. 46
2.2.12.7 IOCTL_INTERNAL_USB_GET_CONTROLLER_NAME 46

2.2.13 USB Internal IO Control Code ... 46
2.2.13.1 IOCTL_TSUSBGD_IOCTL_USBDI_QUERY_BUS_TIME 46

3 Protocol Details ... 48
3.1 Common Details .. 48

3.1.1 Abstract Data Model .. 49
3.1.1.1 Interface Manipulation Data Model .. 49

3.1.2 Timers .. 49
3.1.3 Initialization ... 49
3.1.4 Higher-Layer Triggered Events ... 49
3.1.5 Processing Events and Sequencing Rules ... 49

3.1.5.1 Processing a Shared Message Header .. 50
3.1.5.2 Interface Manipulation ... 50

3.1.6 Timer Events .. 50
3.1.7 Other Local Events .. 50

3.2 Server Details .. 50
3.2.1 Abstract Data Model .. 50
3.2.2 Timers .. 50
3.2.3 Initialization ... 50
3.2.4 Higher-Layer Triggered Events ... 50
3.2.5 Processing Events and Sequencing Rules ... 50

3.2.5.1 Device Sink Interface .. 50
3.2.5.1.1 Processing an Add Virtual Channel Message .. 50
3.2.5.1.2 Processing a Add Device Message .. 50

3.2.5.2 Channel Notification Interface ... 51
3.2.5.2.1 Sending a Channel Created Message .. 51
3.2.5.2.2 Processing a Channel Created Message .. 51

3.2.5.3 USB Device Interface ... 51

6 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

3.2.5.3.1 Sending a Cancel Request Message ... 51
3.2.5.3.2 Sending a Register Request Callback Message 51
3.2.5.3.3 Sending a IO Control Message .. 51
3.2.5.3.4 Sending an Internal IO Control Message ... 52
3.2.5.3.5 Sending a Query Device Text Message ... 52
3.2.5.3.6 Processing a Query Device Text Response Message 52
3.2.5.3.7 Sending a Transfer In Request Message ... 52
3.2.5.3.8 Sending a Transfer Out Request Message ... 52
3.2.5.3.9 Sending a Retract Device Message... 52

3.2.5.4 Request Completion Interface ... 52
3.2.5.4.1 IO Control Completion Message ... 52
3.2.5.4.2 URB Completion Message ... 53
3.2.5.4.3 URB Completion No Data Message ... 53

3.2.5.5 Interface Manipulation Exchange Capabilities Interface 54
3.2.5.5.1 Sending an Interface Manipulation Exchange Capabilities Request Message

 ... 54
3.2.5.5.2 Processing an Interface Manipulation Exchange Capabilities Response

Message ... 54
3.2.6 Timer Events .. 54
3.2.7 Other Local Events .. 54

3.3 Client Details ... 54
3.3.1 Abstract Data Model .. 54
3.3.2 Timers .. 54
3.3.3 Initialization ... 54
3.3.4 Higher-Layer Triggered Events ... 54
3.3.5 Processing Events and Sequencing Rules ... 55

3.3.5.1 Device Sink Interface .. 55
3.3.5.1.1 Sending a Add Virtual Channel Message ... 55
3.3.5.1.2 Sending a Add Device Message ... 55

3.3.5.2 Channel Notification Interface ... 55
3.3.5.2.1 Sending a Channel Created Message .. 55
3.3.5.2.2 Processing a Channel Created Message .. 55

3.3.5.3 USB Device Interface ... 55
3.3.5.3.1 Processing a Cancel Request Message .. 55
3.3.5.3.2 Processing a Register Request Callback Message 55
3.3.5.3.3 Processing an IO Control Message ... 56
3.3.5.3.4 Processing an Internal IO Control Message ... 56
3.3.5.3.5 Processing a Query Device Text Message .. 56
3.3.5.3.6 Processing a Transfer In Request Message .. 56
3.3.5.3.7 Processing a Transfer Out Request Message .. 57
3.3.5.3.8 Processing a Retract Device Message ... 57
3.3.5.3.9 Processing an OS Descriptor request .. 57

3.3.5.4 Request Completion Interface ... 58
3.3.5.4.1 IO Control Completion Message ... 58
3.3.5.4.2 URB Completion Message ... 59
3.3.5.4.3 URB Completion No Data Message ... 59

3.3.5.5 Interface Manipulation Exchange Capabilities Interface Messages 59
3.3.5.5.1 Processing an Interface Manipulation Exchange Capabilities Request

Message ... 59
3.3.5.5.2 Sending an Interface Manipulation Exchange Capabilities Response Message

 ... 59
3.3.6 Timer Events .. 60
3.3.7 Other Local Events .. 60

4 Protocol Examples ... 61
4.1 Server Data Interface Annotations ... 61

4.1.1 Channel Created Message .. 61
4.1.2 Internal IO Control Message ... 61

7 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

4.1.3 IO Control Completion Message .. 62
4.1.4 Transfer In Request Message ... 62
4.1.5 URB Completion Message .. 62

5 Security ... 64
5.1 Security Considerations for Implementers ... 64
5.2 Index of Security Parameters .. 64

6 Appendix A: Product Behavior ... 65

7 Change Tracking .. 67

8 Index ... 68

8 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

1 Introduction

This document specifies the Remote Desktop Protocol: USB Devices Virtual Channel Extension to the
Remote Desktop Protocol. This protocol is used to redirect USB devices from a terminal client to the
terminal server. This allows the server access to devices that are physically connected to the client
as if the device were local to the server.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in

this specification are informative.

1.1 Glossary

This document uses the following terms:

American National Standards Institute (ANSI) character set: A character set defined by a
code page approved by the American National Standards Institute (ANSI). The term "ANSI" as
used to signify Windows code pages is a historical reference and a misnomer that persists in the

Windows community. The source of this misnomer stems from the fact that the Windows code
page 1252 was originally based on an ANSI draft, which became International Organization for
Standardization (ISO) Standard 8859-1 [ISO/IEC-8859-1]. In Windows, the ANSI character set
can be any of the following code pages: 1252, 1250, 1251, 1253, 1254, 1255, 1256, 1257,

1258, 874, 932, 936, 949, or 950. For example, "ANSI application" is usually a reference to a
non-Unicode or code-page-based application. Therefore, "ANSI character set" is often misused
to refer to one of the character sets defined by a Windows code page that can be used as an
active system code page; for example, character sets defined by code page 1252 or character
sets defined by code page 950. Windows is now based on Unicode, so the use of ANSI character
sets is strongly discouraged unless they are used to interoperate with legacy applications or
legacy data.

device driver: The software that the system uses to communicate with a device such as a display,
printer, mouse, or communications adapter. An abstraction layer that restricts access of
applications to various hardware devices on a given computer system. It is often referred to

simply as a "driver".

device interface: A uniform and extensible mechanism that interacts programmatically with
applications and the system. A device driver can expose zero, one, or more than one device

interfaces for a particular device. A device interface is represented by a GUID.

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

HRESULT: An integer value that indicates the result or status of an operation. A particular
HRESULT can have different meanings depending on the protocol using it. See [MS-ERREF]
section 2.1 and specific protocol documents for further details.

Input/Output (I/O) routines: A routine defined by an operating system that enables
applications to interact with a device driver. Applications use these routines for tasks, such as
opening a device, creating a file, reading data from a device, writing data to a device, or sending
control codes to a device.

multisz string: A null-terminated Unicode string composed of other null-terminated strings
appended together. For example, a multisz string that contains "one", "brown", and "cow"
would be represented as three null-terminated strings "one\0", "brown\0", "cow\0" appended
together with an additional null appended, as follows: "one\0brown\0cow\0\0".

https://go.microsoft.com/fwlink/?LinkId=90689
https://go.microsoft.com/fwlink/?LinkId=90460
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

9 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

remote device: A device that is attached to a remote (or client) machine, in contrast to a device
physically attached to a machine.

terminal client: A client of a terminal server. A terminal client program that runs on the client
machine.

terminal server: A computer on which terminal services is running.

Unicode string: A Unicode 8-bit string is an ordered sequence of 8-bit units, a Unicode 16-bit
string is an ordered sequence of 16-bit code units, and a Unicode 32-bit string is an ordered
sequence of 32-bit code units. In some cases, it could be acceptable not to terminate with a
terminating null character. Unless otherwise specified, all Unicode strings follow the UTF-16LE
encoding scheme with no Byte Order Mark (BOM).

URB: This stands for USB Request Packet, as described in [MSFT-W2KDDK], Volume 2, Part 4,

Chapter 3.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-RDPEDYC] Microsoft Corporation, "Remote Desktop Protocol: Dynamic Channel Virtual Channel
Extension".

[MS-RDPEXPS] Microsoft Corporation, "Remote Desktop Protocol: XML Paper Specification (XPS) Print
Virtual Channel Extension".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[USB-SPC2.0] USB Consortium, "USB 2.0 Specification", April 2000,
http://www.usb.org/developers/docs/

1.2.2 Informative References

[MS-RDPBCGR] Microsoft Corporation, "Remote Desktop Protocol: Basic Connectivity and Graphics
Remoting".

[MS-RDPEFS] Microsoft Corporation, "Remote Desktop Protocol: File System Virtual Channel
Extension".

https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-RDPEDYC%5d.pdf#Section_3bd530209b644c9a97fc90a79e7e1e06
%5bMS-RDPEDYC%5d.pdf#Section_3bd530209b644c9a97fc90a79e7e1e06
%5bMS-RDPEXPS%5d.pdf#Section_0231eff1ec784371b19c6f81e1cc55ee
%5bMS-RDPEXPS%5d.pdf#Section_0231eff1ec784371b19c6f81e1cc55ee
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=207891
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-RDPEFS%5d.pdf#Section_34d9de58b2b540b6b970f82d4603bdb5
%5bMS-RDPEFS%5d.pdf#Section_34d9de58b2b540b6b970f82d4603bdb5

10 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

1.3 Protocol Overview (Synopsis)

The Remote Desktop Protocol: USB Devices Virtual Channel Extension is used to transfer USB packets
from a terminal server to a terminal client. The client forwards the USB packets to a physical device.

Then the client returns the results after the physical device reassembles the packets.

Because this protocol can redirect a USB device, the implementer has to provide a way for the client
to specify the USB devices that are redirected using this protocol, or the devices that will use an
alternative method or the devices that are not redirected at all. When the device is redirected it
cannot be used on the client. Examples:

 A USB mouse is attached to the client. If redirected using this protocol the mouse cannot be used
on the client locally. However, if the client doesn't have a driver for the USB mouse, or if this is a

second USB mouse, then this is an appropriate scenario to redirect a USB mouse using this
protocol.

 Flash drive: Alternative methods for redirecting the drive, such as the one described in [MS-
RDPEFS]; might or might not be more successful because that protocol is optimized for drives.

The examples can become complicated if composite devices are behind one USB device, because there
are several different devices that can be used. As a result there isn't one definitive answer to what

method can be used; as a result, this protocol is not trying to enforce any decision. The implementer
of this protocol can consider enough provisions to give the user flexibility to choose whether or not to
redirect a device, and can attempt to prevent the user from losing control of a USB device that the
user doesn't want to be redirected. Examples of such provisions are: group policies, notifications, User
Interface for selecting the right device, and so on.

The following diagram describes the event sequences in relation to the hardware USB device and the
USB driver stack on the server.

Figure 1: USB stack flow

When a USB device is plugged in, the client sends to the server the Add Virtual Channel Message as
described in section 1.3.1.2. The server in response sends the Channel Create Message described in
section 2.2.5.1 and waits for the same message to arrive from the client. The server then creates a

USB driver stack that will represent the device to the system. Immediately after the client has sent
the Channel Create Message, the client then sends the Add Device Message as described in section

%5bMS-RDPEFS%5d.pdf#Section_34d9de58b2b540b6b970f82d4603bdb5
%5bMS-RDPEFS%5d.pdf#Section_34d9de58b2b540b6b970f82d4603bdb5

11 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

1.3.1.2. After that point, the server and the client are ready to exchange I/O packets as described in
section 1.3.1.3.

When the device is unplugged from the client, it closes the channel to the server on which the I/O is
sent for that particular device. This destroys the driver stacks and stops any further I/O between the

client and the server.

1.3.1 USB Devices Virtual Channel Protocol

The Remote Desktop Protocol: USB Devices Virtual Channel Extension is divided into the following

logical sequences:

Channel setup sequence: A channel is opened, and capabilities are exchanged. The channel is
assigned a specific identifier that is used by the client and the server to identify the USB device.

New device sequence: The client notifies the server about the arrival of a new device. The server
creates a device on the server machine that corresponds to the device reported by the client.

I/O sequence: The server sends USB packets to the client and the client forwards the USB packets
to the physical device and sends back the results after the physical device reassembles the

packets.

1.3.1.1 Channel Setup Sequence

The Remote Desktop Protocol: USB Devices Virtual Channel Extension uses multiple channels within a
single named dynamic virtual channel. There is one control channel and one channel for each of the

USB devices. The goal of this sequence is to set up the identifiers for the channel and to exchange the
platform and version capabilities.

Figure 2: Channel setup sequence

1.3.1.2 New Device Sequence

The client uses the new device sequence to notify the server about a new device. It first notifies the

server to create a new instance of the USB Redirection virtual channel. Once the new virtual channel is
created, a new device message is sent to the server via the new virtual channel. The device is
recognized based on the HardwareIds field of Add device message (section 2.2.4.2).

12 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Figure 3: New device sequence

1.3.1.3 I/O Sequence

The server uses the I/O sequence to send I/O requests to the client. The server can send multiple I/O
requests to the client without first waiting for the previously sent requests to be completed first.

Figure 4: I/O sequence

1.4 Relationship to Other Protocols

The Remote Desktop Protocol: USB Devices Virtual Channel Extension is embedded in a dynamic
virtual channel transport, as specified in [MS-RDPEDYC].

%5bMS-RDPEDYC%5d.pdf#Section_3bd530209b644c9a97fc90a79e7e1e06

13 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

1.5 Prerequisites and Preconditions

The Remote Desktop Protocol: USB Devices Virtual Channel Extension operates only after the dynamic
virtual channel transport is fully established. If the dynamic virtual channel transport is terminated,

the Remote Desktop Protocol: USB Devices Virtual Channel Extension is also terminated. The protocol
is terminated by closing the underlying virtual channel. For details about closing the dynamic virtual
channel, refer to [MS-RDPEDYC] section 3.2.5.2.

1.6 Applicability Statement

The Remote Desktop Protocol: USB Devices Virtual Channel Extension is designed to run within the
context of a Remote Desktop Protocol (RDP) virtual channel established between a client and server.
This protocol is applicable when any local client USB devices are to be accessible (redirected) in the
remote session hosted on the server.

Device drivers and applications have to meet the following requirements if they are to be redirected:

 This protocol is not intended for use with devices that require quality-of-service guarantees

(because the I/O is sent over a network, there is no guarantee about the timeframe for delivering
the I/O to and receiving it from the device).

 For redirection to operate properly using this protocol, all communication between devices and
applications are routed through the I/O routines supported by device drivers. Communication
cannot be routed by any other means, such as shared memory, the registry, or disk files.

 This protocol redirects the following operating system-specific I/O calls: Read, Write, and
IOControl. Communication between the device driver and the application cannot be anything other

than these basic calls. If there is any other I/O, the device cannot be redirected using this protocol
hence the device will be treated as any other device attached to the client and this protocol will
not be involved in any means.

1.7 Versioning and Capability Negotiation

This protocol supports versioning and capability negotiation at two levels. The first is supported
through the use of interface manipulation messages, as specified in sections 2.2.2 and 2.2.3. The
second is supported by the capability exchange messages, as specified in section 2.2.5.1.

The USB2.0 specification also includes versioning in the Device descriptor as described in section 9.6.1
of [USB-SPC2.0].

1.8 Vendors-Extensible Fields

This protocol uses HRESULTs, as specified in [MS-ERREF] section 2.1. Vendors are free to choose
their own values, as long as the C bit (0x20000000) is set, indicating that it is a customer code.

1.9 Standards Assignments

None.

%5bMS-RDPEDYC%5d.pdf#Section_3bd530209b644c9a97fc90a79e7e1e06
https://go.microsoft.com/fwlink/?LinkId=207891
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

14 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

2 Messages

2.1 Transport

The Remote Desktop Protocol: USB Devices Virtual Channel Extension is designed to operate over

dynamic virtual channels, as specified in [MS-RDPEDYC]. The dynamic virtual channel name is the
ANSI-encoded null-terminated string "URBDRC". The usage of a channel name when opening a
dynamic virtual channel is specified in [MS-RDPEDYC] section 2.2.2.1.

2.2 Message Syntax

2.2.1 Shared Message Header (SHARED_MSG_HEADER)

Every packet in this extension contains a common header.<1>

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

InterfaceId Mask

MessageId

FunctionId (optional)

messagePayload (variable)

...

InterfaceId (30 bits): A 30-bit field that represents the common identifier for the interface. Some

interfaces have predefined default IDs. If the message uses a default interface ID, the message is
interpreted for the associated interface. All other values MUST be retrieved either from a Query
Interface response (QI_RSP) ([MS-RDPEXPS] section 2.2.2.1.2) or from responses that contain
interface IDs. The highest two bits of the NetInterfaceId field in a QI_RSP message MUST be
ignored.

This interface ID is valid until it is sent or received in an Interface Release (IFACE_RELEASE)
message ([MS-RDPEXPS] section 2.2.2.2). After an IFACE_RELEASE message is processed, the ID
is considered invalid.

Mask (2 bits): The 2 bits of the Mask field MUST be set to one of the following values.

Value Meaning

STREAM_ID_STUB

0x2

Indicates that the SHARED_MSG_HEADER is being used in a response message.

STREAM_ID_PROXY

0x1

Indicates that the SHARED_MSG_HEADER is not being used in a response message.

STREAM_ID_NONE

0x0

Indicates that the SHARED_MSG_HEADER is being used for interface manipulation
capabilities exchange as specified in section 2.2.3. This value MUST NOT be used for

any other messages.

%5bMS-RDPEDYC%5d.pdf#Section_3bd530209b644c9a97fc90a79e7e1e06
%5bMS-RDPEXPS%5d.pdf#Section_0231eff1ec784371b19c6f81e1cc55ee

15 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

MessageId (4 bytes): A 32-bit unsigned integer. A unique ID for the request or response pair.
Requests and responses are matched based on this ID coupled with the InterfaceId.

FunctionId (4 bytes): A 32-bit unsigned integer. This field MUST be present in all packets except
response packets. Its value is either used in interface manipulation messages or defined for a

specific interface. The following values are categorized by the interface for which they are defined.

Common IDs for all interfaces are as follows.

Value Meaning

RIMCALL_RELEASE

0x00000001

Release the given interface ID.

RIMCALL_QUERYINTERFACE

0x00000002

Query for a new interface.

Capabilities Negotiator Interface IDs are as follows.

Value Meaning

RIM_EXCHANGE_CAPABILITY_REQUEST

0x00000100

The server sends the Interface Manipulation Exchange
Capabilities Request message.

Client Request Completion Interface IDs are as follows.

Value Meaning

IOCONTROL_COMPLETION

0x00000100

The client sends the IO Control Completion message.

URB_COMPLETION

0x00000101

The client sends the URB Completion message.

URB_COMPLETION_NO_DATA

0x00000102

The client sends the URB Completion No Data message.

Server USB Device Interface IDs are as follows.

Value Meaning

CANCEL_REQUEST

0x00000100

The server sends the Cancel Request message.

REGISTER_REQUEST_CALLBACK

0x00000101

The server sends the Register Request Callback message.

IO_CONTROL

0x00000102

The server sends the IO Control message.

INTERNAL_IO_CONTROL

0x00000103

The server sends the Internal IO Control message.

QUERY_DEVICE_TEXT

0x00000104

The server sends the Query Device Text message.

TRANSFER_IN_REQUEST The server sends the Transfer In Request message.

16 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Value Meaning

0x00000105

TRANSFER_OUT_REQUEST

0x00000106

The server sends the Transfer Out Request message.

RETRACT_DEVICE

0x00000107

The server sends the Retract Device message.

Client Device Sink Interface IDs are as follows.

Value Meaning

ADD_VIRTUAL_CHANNEL

0x00000100

The client sends the Add Virtual Channel message.

ADD_DEVICE

0x00000101

The client sends the Add Device message.

Channel Notification Interface IDs are as follows.

Value Meaning

CHANNEL_CREATED

0x00000100

The server and the client send the Channel Created message.

messagePayload (variable): An array of unsigned 8-bit integers. The remainder of the message is
interpreted based on the interface for which the packet is sent. This field is optional based on the
packet length.

2.2.2 Interface Manipulation

This protocol utilizes the same Interface Query and Interface Release messages that are defined in
[MS-RDPEXPS] section 2.2.2.

2.2.3 Interface Manipulation Exchange Capabilities Interface

The Exchange Capabilities Interface is identified by the interface ID 0x00000000. This interface is
used to exchange the client's and the server's capabilities for interface manipulation.

2.2.3.1 Interface Manipulation Exchange Capabilities Request

(RIM_EXCHANGE_CAPABILITY_REQUEST)

This message is used by the server to request interface manipulation capabilities from the client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header (variable)

...

CapabilityValue

%5bMS-RDPEXPS%5d.pdf#Section_0231eff1ec784371b19c6f81e1cc55ee

17 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Header (variable): The SHARED_MSG_HEADER (as specified in section 2.2.1). The InterfaceId field
MUST be set to 0x00000000. The Mask field MUST be set to STREAM_ID_NONE. The FunctionId

field MUST be set to RIM_EXCHANGE_CAPABILITY_REQUEST (0x00000100).

CapabilityValue (4 bytes): A 32-bit unsigned integer that identifies the server's capability. The valid

values for this field are as follows.

Value Meaning

RIM_CAPABILITY_VERSION_01

0x00000001

This capability MUST be present in the message.

2.2.3.2 Interface Manipulation Exchange Capabilities Response

(RIM_EXCHANGE_CAPABILITY_RESPONSE)

This message is sent by the client in response to RIM_EXCHANGE_CAPABILITY_REQUEST.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header (variable)

...

CapabilityValue

Result

Header (variable): The SHARED_MSG_HEADER (as specified in section 2.2.1). The InterfaceId field

and the MessageId field in this message header SHOULD contain the same values as the
InterfaceId and MessageId fields in the corresponding RIM_EXCHANGE_CAPABILITY_REQUEST
message. The Mask field MUST be set to STREAM_ID_NONE.

CapabilityValue (4 bytes): A 32-bit unsigned integer that identifies the client's capability. The valid
values for this field are as follows.

Value Meaning

RIM_CAPABILITY_VERSION_01

0x00000001

This capability MUST be present in the message.

Result (4 bytes): A 32-bit unsigned integer that indicates the HRESULT of the operation.

2.2.4 Device Sink Interface

The device sink interface is identified by the default interface ID 0x00000001. The device sink
interface is used by the client to communicate with the server about new USB devices.

2.2.4.1 Add Virtual Channel Message (ADD_VIRTUAL_CHANNEL)

The ADD_VIRTUAL_CHANNEL message is sent from the client to the server to create a new instance of

dynamic virtual channel.

18 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header (variable)

...

Header (variable): The SHARED_MSG_HEADER (as specified in section 2.2.1). The InterfaceId field
MUST be set to 0x00000001. The Mask field MUST be set to STREAM_ID_PROXY. The FunctionId
field MUST be set to ADD_VIRTUAL_CHANNEL (0x00000100).

2.2.4.2 Add Device Message (ADD_DEVICE)

The ADD_DEVICE message is sent from the client to the server in order to create a redirected USB
device on the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header (variable)

...

NumUsbDevice

UsbDevice

cchDeviceInstanceId

DeviceInstanceId (variable)

...

cchHwIds

HardwareIds (variable)

...

cchCompatIds

CompatibilityIds (variable)

...

cchContainerId

ContainerId (variable)

...

19 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

UsbDeviceCapabilities (28 bytes)

...

...

Header (variable): The SHARED_MSG_HEADER (as specified in section 2.2.1). The InterfaceId field
MUST be set to 0x00000001. The Mask field MUST be set to STREAM_ID_PROXY. The FunctionId
field MUST be set to ADD_DEVICE (0x00000101).

NumUsbDevice (4 bytes): A 32-bit unsigned integer. MUST be set to 0x00000001.

UsbDevice (4 bytes): A 32-bit unsigned integer. A unique interface ID to be used by request
messages defined in USB device interface.

cchDeviceInstanceId (4 bytes): A 32-bit unsigned integer. This field MUST contain the number of

Unicode characters in the DeviceInstanceId field.

DeviceInstanceId (variable): An array of bytes. A variable-length field that contains a null-

terminated Unicode string that identifies an instance of a USB device.

cchHwIds (4 bytes): A 32-bit unsigned integer. This field MUST contain the number of Unicode
characters in the HardwareIds field. This field MAY be 0x00000000.

HardwareIds (variable): An array of bytes. A variable-length field that specifies a multisz string
representing the hardware IDs of the client-side device. If the value in the cchHwIds field is
0x00000000, the HardwareIds buffer MUST NOT be present.

cchCompatIds (4 bytes): A 32-bit unsigned integer. This field MUST contain the number of Unicode

characters in the CompatibilityIds field.

CompatibilityIds (variable): An array of bytes. A variable-length field that specifies a multisz string
representing the compatibility IDs of the client-side device. If the value in the cchCompatIds

field is 0x00000000, the CompatibilityIds buffer MUST NOT be present.

cchContainerId (4 bytes): A 32-bit unsigned integer. This field MUST contain the number of
Unicode characters in the ContainerId field.

ContainerId (variable): An array of bytes. A variable-length field that contains a null-terminated

Unicode string that contains the container ID in GUID, as specified in [MS-DTYP] section 2.3.4.2,
format of the USB device. A group of devices that represent the same physical unit share the
same container ID. The value of the container ID MUST be unique and MUST not be set to zero.

UsbDeviceCapabilities (28 bytes): A 28-byte structure as specified in section 2.2.11.

2.2.5 Channel Notification Interface

The channel notification interface is used by both the client and the server to communicate with the

other side. For server-to-client notifications, the default interface ID is 0x00000003; for client-to-
server notifications, the default interface ID is 0x00000002.

2.2.5.1 Channel Created Message (CHANNEL_CREATED)

The CHANNEL_CREATED message is sent from both the client and the server to inform the other side
of the RDP USB device redirection version supported.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

20 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header (variable)

...

MajorVersion

MinorVersion

Capabilities

Header (variable): The SHARED_MSG_HEADER (as specified in section 2.2.1). The InterfaceId field
MUST be set to 0x00000002 if sent by the server and it MUST be set to 0x000000003 if sent by
the client. The Mask field MUST be set to STREAM_ID_PROXY. The FunctionId field MUST be set

to CHANNEL_CREATED (0x00000100).

MajorVersion (4 bytes): A 32-bit unsigned integer. The major version of RDP USB redirection
supported. This value MUST be set to one.

MinorVersion (4 bytes): A 32-bit unsigned integer. The minor version of RDP USB redirection
supported. This value MUST be set to zero.

Capabilities (4 bytes): A 32-bit unsigned integer. The capabilities of RDP USB redirection supported.

This value MUST be set to zero.

2.2.6 USB Device Interface

The USB device interface is used by the server to send IO-related requests to the client.

2.2.6.1 Cancel Request Message (CANCEL_REQUEST)

The CANCEL_REQUEST message is sent from the server to the client to cancel an outstanding IO
request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header (variable)

...

RequestId

Header (variable): The SHARED_MSG_HEADER (as specified in section 2.2.1). The InterfaceId field
MUST match the value sent previously in the UsbDevice field of the ADD_DEVICE message. The
Mask field MUST be set to STREAM_ID_PROXY. The FunctionId field MUST be set to
CANCEL_REQUEST (0x00000100).

RequestId (4 bytes): A 32-bit unsigned integer. This value represents the ID of a request previously
sent via IO_CONTROL, INTERNAL_IO_CONTROL, TRANSFER_IN_REQUEST, or
TRANSFER_OUT_REQUEST message.

21 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

2.2.6.2 Register Request Callback Message (REGISTER_REQUEST_CALLBACK)

The REGISTER_REQUEST_CALLBACK message is sent from the server to the client in order to provide
a Request Completion Interface to the client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header (variable)

...

NumRequestCompletion

RequestCompletion (optional)

Header (variable): The SHARED_MSG_HEADER (as specified in section 2.2.1). The InterfaceId field
MUST match the value sent previously in the UsbDevice field of the ADD_DEVICE message. The
Mask field MUST be set to STREAM_ID_PROXY. The FunctionId field MUST be set to
REGISTER_REQUEST_CALLBACK (0x00000101).

NumRequestCompletion (4 bytes): A 32-bit unsigned integer. If this field is set to 0x00000001 or
greater, then the RequestCompletion field is also present. If this field is set to 0x0000000, the

RequestCompletion field is not present.

RequestCompletion (4 bytes): A 32-bit unsigned integer. A unique InterfaceID to be used by all
Request Completion messages defined in the Request Completion Interface (section 2.2.7).

2.2.6.3 IO Control Message (IO_CONTROL)

The IO_CONTROL message is sent from the server to the client in order to submit an IO control
request to the USB device.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header (variable)

...

IoControlCode

InputBufferSize

InputBuffer (variable)

...

OutputBufferSize

RequestId

Header (variable): The SHARED_MSG_HEADER (as specified in section 2.2.1). The InterfaceId field
MUST match the value sent previously in the UsbDevice field of the ADD_DEVICE message. The

22 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Mask field MUST be set to STREAM_ID_PROXY. The FunctionId field MUST be set to
IO_CONTROL (0x00000102).

IoControlCode (4 bytes): A 32-bit unsigned integer. An IO control code as specified in section
2.2.12.

InputBufferSize (4 bytes): A 32-bit unsigned integer. The size, in bytes, of the InputBuffer field.

InputBuffer (variable): A byte array. This value represents the input buffer for the IO control
request.

OutputBufferSize (4 bytes): A 32-bit unsigned integer. The maximum number of bytes the client
can return to the server.

RequestId (4 bytes): A 32-bit unsigned integer. This ID uniquely identifies the I/O control request.

2.2.6.4 Internal IO Control Message (INTERNAL_IO_CONTROL)

The INTERNAL_IO_CONTROL message is sent from the server to the client in order to submit an
internal IO control request to the USB device.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header (variable)

...

IoControlCode

InputBufferSize

InputBuffer (variable)

...

OutputBufferSize

RequestId

Header (variable): The SHARED_MSG_HEADER (as specified in section 2.2.1). The InterfaceId field
MUST match the value sent previously in the UsbDevice field of the ADD_DEVICE message. The
Mask field MUST be set to STREAM_ID_PROXY. The FunctionId field MUST be set to
INTERNAL_IO_CONTROL (0x00000103).

IoControlCode (4 bytes): A 32-bit unsigned integer. An internal IO control code as specified in

section 2.2.13.

InputBufferSize (4 bytes): A 32-bit unsigned integer. The size, in bytes, of the InputBuffer field.

InputBuffer (variable): A byte array. This value represents the input buffer for the internal IO
control request.

OutputBufferSize (4 bytes): A 32-bit unsigned integer. The maximum number of bytes the internal
IO control request can return.

23 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

RequestId (4 bytes): A 32-bit unsigned integer. This value represents an ID that uniquely identifies
this internal IO control request.

2.2.6.5 Query Device Text Message (QUERY_DEVICE_TEXT)

The QUERY_DEVICE_TEXT message is sent from the server to the client in order to query the USB
device's text when the server receives a query device test request (IRP_MN_QUERY_DEVICE_TEXT)
from the system as described in [MSFT-W2KDDK], Volume 1, Part 1, Chapter 2.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header (variable)

...

TextType

LocaleId

Header (variable): The SHARED_MSG_HEADER (as specified in section 2.2.1). The InterfaceId field
MUST match the value sent previously in the UsbDevice field of the ADD_DEVICE message. The
Mask field MUST be set to STREAM_ID_PROXY. The FunctionId field MUST be set to
QUERY_DEVICE_TEXT (0x00000104).

TextType (4 bytes): A 32-bit unsigned integer. This value represents the type of text to query as
described in [MSFT-W2KDDK], Volume 1, Part 1, Chapter 2.

LocaleId (4 bytes): A 32-bit unsigned integer. This value represents the locale of the text to query

as described in [MSFT-W2KDDK], Volume 1, Part 1, Chapter 2.

2.2.6.6 Query Device Text Response Message (QUERY_DEVICE_TEXT_RSP)

The QUERY_DEVICE_TEXT_RSP message is sent from the client in response to a QUERY_DEVICE_TEXT
message sent by the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header (variable)

...

cchDeviceDescription

DeviceDescription (variable)

...

HResult

Header (variable): The SHARED_MSG_HEADER (as specified in section 2.2.1). The InterfaceId and
MessageId fields in this header MUST contain the same values as the InterfaceId and

24 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

MessageId fields in the corresponding QUERY_DEVICE_TEXT. The Mask field MUST be set to
STREAM_ID_STUB.

cchDeviceDescription (4 bytes): A 32-bit unsigned integer. This field MUST contain the number of
Unicode characters in the DeviceDescription field.

DeviceDescription (variable): An array of bytes. A variable-length field that contains a null-
terminated Unicode string that contains the requested device text.

HResult (4 bytes): A 32-bit unsigned integer that indicates the HRESULT of the operation.

2.2.6.7 Transfer In Request (TRANSFER_IN_REQUEST)

The TRANSFER_IN_REQUEST message is sent from the server to the client in order to request data
from the USB device.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header (variable)

...

CbTsUrb

TsUrb (variable)

...

OutputBufferSize

Header (variable): The SHARED_MSG_HEADER (as specified in section 2.2.1). The InterfaceId field
MUST match the value sent previously in the UsbDevice field of the ADD_DEVICE message. The
Mask field MUST be set to STREAM_ID_PROXY. The FunctionId field MUST be set to

TRANSFER_IN_REQUEST (0x00000105).

CbTsUrb (4 bytes): A 32-bit unsigned integer. The size, in bytes, of the TsUrb field.

TsUrb (variable): A TS_URB structure as defined in section 2.2.9.

OutputBufferSize (4 bytes): A 32-bit unsigned integer. This value represents the maximum number
of bytes of data that is requested from the USB device.

2.2.6.8 Transfer Out Request (TRANSFER_OUT_REQUEST)

The TRANSFER_OUT_REQUEST message is sent from the server to the client in order to submit data
to the USB device.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header (variable)

...

25 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

CbTsUrb

TsUrb (variable)

...

OutputBufferSize

OutputBuffer (variable)

...

Header (variable): The SHARED_MSG_HEADER (as specified in section 2.2.1). The InterfaceId field
MUST match the value sent previously in the UsbDevice field of the ADD_DEVICE message. The
Mask field MUST be set to STREAM_ID_PROXY. The FunctionId field MUST be set to

TRANSFER_OUT_REQUEST (0x00000106).

CbTsUrb (4 bytes): A 32-bit unsigned integer. The size, in bytes, of the TsUrb field.

TsUrb (variable): A TS_URB structure as defined in section 2.2.9.

OutputBufferSize (4 bytes): A 32-bit unsigned integer. The size in bytes of the OutputBuffer field.

OutputBuffer (variable): An array of bytes. The raw data to be sent to the device.

2.2.6.9 Retract Device (RETRACT_DEVICE)

The RETRACT_DEVICE message is sent from the server to the client in order to stop redirecting the
USB device.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header (variable)

...

Reason

Header (variable): The SHARED_MSG_HEADER (as specified in section 2.2.1). The InterfaceId field

MUST match the value sent previously in the UsbDevice field of the ADD_DEVICE message. The
Mask field MUST be set to STREAM_ID_PROXY. The FunctionId field MUST be set to
RETRACT_DEVICE (0x00000107).

Reason (4 bytes): A 32-bit unsigned integer. The reason code, as specified in section 2.2.8, to stop

redirecting the USB device.

2.2.7 Request Completion Interface

The Request Completion Interface is used by the client to send the final result for a request previously
sent from the server.

26 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

2.2.7.1 IO Control Completion (IOCONTROL_COMPLETION)

The IOCONTROL_COMPLETION request is sent from the client to the server as the final result of an IO
Control request or internal IO Control request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header (variable)

...

RequestId

HResult

Information

OutputBufferSize

OutputBuffer (variable)

...

Header (variable): The SHARED_MSG_HEADER (as specified in section 2.2.1). The InterfaceId field
MUST match the value sent previously in the RequestCompletion field of the
REGISTER_REQUEST_CALLBACK message. The Mask field MUST be set to STREAM_ID_PROXY.
The FunctionId field MUST be set to IOCONTROL_COMPLETION (0x00000100).

RequestId (4 bytes): A 32-bit unsigned integer. This field MUST match the value sent previously in
the RequestId field of the IO_CONTROL message, as specified in section 2.2.6.3.

HResult (4 bytes): A 32-bit unsigned integer that indicates the HRESULT of the operation.

Information (4 bytes): A 32-bit unsigned integer. The number of bytes of data to be transferred by
the request.

OutputBufferSize (4 bytes): A 32-bit unsigned integer. The size, in bytes, of the OutputBuffer
field. The value of this field MUST not exceed the value of OutputBufferSize field from
IO_CONTROL message. If the HResult field indicates success, this field and the Information field

MUST be equal. If the HResult field is equal to
HRESULT_FROM_WIN32(ERROR_INSUFFICIENT_BUFFER) then this field is set to the value of
OutputBufferSize from IO_CONTROL message and the Information field MUST indicate the
expected size of the OutputBuffer field. For any other case this field MUST be set to 0 and the
value of the Information field MUST be ignored.

OutputBuffer (variable): A data buffer that results from processing the request.

2.2.7.2 URB Completion (URB_COMPLETION)

The URB_COMPLETION request is sent from the client to the server as the final result of a
TRANSFER_IN_REQUEST that contains output data.

27 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header (variable)

...

RequestId

CbTsUrbResult

TsUrbResult (variable)

...

HResult

OutputBufferSize

OutputBuffer (variable)

...

Header (variable): The SHARED_MSG_HEADER (as specified in section 2.2.1). The InterfaceId field
MUST match the value sent previously in the RequestCompletion field of the
REGISTER_REQUEST_CALLBACK message. The Mask field MUST be set to STREAM_ID_PROXY.

The FunctionId field MUST be set to URB_COMPLETION (0x00000101).

RequestId (4 bytes): A 32-bit unsigned integer. This field MUST match the value sent previously in
the RequestId field of TsUrb structure in the TRANSFER_IN_REQUEST message.

CbTsUrbResult (4 bytes): A 32-bit unsigned integer. The size, in bytes, of the TsUrbResult field.

TsUrbResult (variable): A TS_URB_RESULT structure as defined in 2.2.10.

HResult (4 bytes): A 32-bit unsigned integer that indicates the HRESULT of the operation.

OutputBufferSize (4 bytes): A 32-bit unsigned integer. The size, in bytes, of the OutputBuffer
field.

OutputBuffer (variable): A data buffer that results from processing the request.

2.2.7.3 URB Completion No Data (URB_COMPLETION_NO_DATA)

The URB_COMPLETION_NO_DATA request is sent from the client to the server as the final result of a
TRANSFER_IN_REQUEST that contains no output data or a TRANSFER_OUT_REQUEST.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header (variable)

...

28 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

RequestId

CbTsUrbResult

TsUrbResult (variable)

...

HResult

OutputBufferSize

Header (variable): The SHARED_MSG_HEADER (as specified in section 2.2.1). The InterfaceId field
MUST match the value sent previously in the RequestCompletion field of the
REGISTER_REQUEST_CALLBACK message. The Mask field MUST be set to STREAM_ID_PROXY.

The FunctionId field MUST be set to URB_COMPLETION_NO_DATA (0x00000102).

RequestId (4 bytes): A 32-bit unsigned integer. This field MUST match the value sent previously in
the RequestId field of TsUrb structure in the TRANSFER_IN_REQUEST or
TRANSFER_OUT_REQUEST message.

CbTsUrbResult (4 bytes): A 32-bit unsigned integer. The size, in bytes, of the TsUrbResult field.

TsUrbResult (variable): A TS_URB_RESULT structure as defined in 2.2.10.

HResult (4 bytes): A 32-bit unsigned integer that indicates the HRESULT of the operation.

OutputBufferSize (4 bytes): A 32-bit unsigned integer. The size, in bytes, of data sent to the device
of the RequestId that corresponds to a TRANSFER_OUT_REQUEST. This field MUST be zero if the
RequestId corresponds to a TRANSFER_IN_REQUEST.

2.2.8 USB_RETRACT_REASON Constants

The reason why the server requests the client to stop redirecting a USB device.

Symbolic name/value Description

UsbRetractReason_BlockedByPolicy

0x00000001

The USB device is to be stopped from being redirected because the device

is blocked by the server's policy.

2.2.9 TS_URB Structures

The TRANSFER_IN_REQUEST or TRANSFER_OUT_REQUEST is sent in response to a URB request

received from the system.

For information on URB definitions, see [MSFT-W2KDDK], Volume 2, Part 4, Chapter 3.

2.2.9.1 Common Structures

This section specifies common structures that are used by more than one TS_URB structure.

2.2.9.1.1 TS_URB_HEADER

Every TS_URB structure begins with a common header called TS_URB_HEADER.

29 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Size URB Function

RequestId A

Size (2 bytes): A 16-bit unsigned integer. The size in bytes of the TS_URB structure.

URB Function (2 bytes): A 16-bit unsigned integer. The URB function as specified in [MSFT-
W2KDDK], Volume 2, Part 4, Chapter 3. The URB structure specified by the URB function is

represented by appropriate TS_URB structure as it is described in this protocol.

RequestId (31 bits): A 31-bit field. An ID that uniquely identifies the TRANSFER_IN_REQUEST or
TRANSFER_OUT_REQUEST.

A - NoAck (1 bit): A 1-bit field, this is the highest bit of a little endian byte-order field. If this bit is

nonzero, the client is not to send a URB_COMPLETION message for this
TRANSFER_OUT_REQUEST. This bit can be nonzero only if the

NoAckIsochWriteJitterBufferSizeInMs field in USB_DEVICE_CAPABILITIES is nonzero and URB
Function is set to URB_FUNCTION_ISOCH_TRANSFER. If the RequestId field is set to
TRANSFER_IN_REQUEST, this field MUST be set to zero.

2.2.9.1.2 TS_USBD_INTERFACE_INFORMATION

The TS_USBD_INTERFACE_INFORMATION is based on the USBD_INTERFACE_INFORMATION structure
as described in [MSFT-W2KDDK], Volume 2, Part 4, Chapter 3.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length NumberOfPipesExpected

InterfaceNumber AlternateSetting Padding

NumberOfPipes

TS_USBD_PIPE_INFORMATION (variable)

...

Length (2 bytes): A 16-bit unsigned integer. The size in bytes of the
TS_USBD_INTERFACE_INFORMATION structure.

NumberOfPipesExpected (2 bytes): A 16-bit unsigned integer. The number of
USBD_PIPE_INFORMATION structures found in the USBD_INTERFACE_INFORMATION.

InterfaceNumber (1 byte): A 8-bit unsigned integer. This value is from the InterfaceNumber field
in USBD_INTERFACE_INFORMATION.

AlternateSetting (1 byte): A 8-bit unsigned integer. This value is from the AlternateSetting field
in USBD_INTERFACE_INFORMATION.

Padding (2 bytes): A 16-bit unsigned integer for padding. This field can be set to any value and
MUST be ignored upon receipt.

30 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

NumberOfPipes (4 bytes): A 32-bit unsigned integer. This value is from the NumberOfPipes field
in USBD_INTERFACE_INFORMATION.

TS_USBD_PIPE_INFORMATION (variable): An array of TS_USBD_PIPE_INFORMATION structures,
as specified in section 2.2.9.1.3. The number of array elements is determined by the

NumberOfPipes field.

2.2.9.1.3 TS_USBD_PIPE_INFORMATION

The TS_USBD_PIPE_INFORMATION is based on the USBD_PIPE_INFORMATION structure as described
in [MSFT-W2KDDK], Volume 2, Part 4, Chapter 3.<2>

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MaximumPacketSize Padding

MaximumTransferSize

PipeFlags

MaximumPacketSize (2 bytes): A 16-bit unsigned integer. This value is from the

MaximumPacketSize field in USBD_PIPE_INFORMATION.

Padding (2 bytes): A 16-bit unsigned integer for padding. This field can be set to any value and
MUST be ignored upon receipt.

MaximumTransferSize (4 bytes): A 32-bit unsigned integer. This value is from the
MaximumTransferSize field in USBD_PIPE_INFORMATION.

PipeFlags (4 bytes): A 32-bit unsigned integer. This value is from the PipeFlags field in

USBD_PIPE_INFORMATION.

2.2.9.2 TS_URB_SELECT_CONFIGURATION

This packet represents the URB structure URB_SELECT_CONFIGURATION, as specified in [MSFT-
W2KDDK] Volume 2, Part 4, chapter 3. The packet is sent using TRANSFER_IN_REQUEST.

OutputBufferSize MUST be set to zero.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TS_URB_HEADER

...

ConfigurationDescriptorIs
Valid

Padding

NumInterfaces

TS_USBD_INTERFACE_INFORMATION (variable)

...

31 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

USB_CONFIGURATION_DESCRIPTOR (variable)

...

TS_URB_HEADER (8 bytes): A TS_URB_HEADER as specified in section 2.2.9.1.1.

ConfigurationDescriptorIsValid (1 byte): A 8-bit unsigned integer. A non-zero value indicates that
the TS_URB_SELECT_CONFIGURATION contains the USB_CONFIGURATION_DESCRIPTOR field.

Padding (3 bytes): A 24-bit unsigned integer for padding. This field can be set to any value and
MUST be ignored upon receipt.

NumInterfaces (4 bytes): A 32-bit unsigned integer. The number of
TS_USBD_INTERFACE_INFORMATION structures that are in the
TS_URB_SELECT_CONFIGURATION.

TS_USBD_INTERFACE_INFORMATION (variable): An array of

TS_USBD_INTERFACE_INFORMATION structures as specified in section 2.2.9.1.2. The number of
elements is determined by the NumInterfaces field.

USB_CONFIGURATION_DESCRIPTOR (variable): All data for the configuration with a
USB_CONFIGURATION_DESCRIPTOR as specified in [MSFT-W2KDDK] Volume 2, Part 4, Chapter 3.

2.2.9.3 TS_URB_SELECT_INTERFACE

This packet represents the URB structure URB_SELECT_INTERFACE, as specified in [MSFT-W2KDDK]
Volume 2, Part 4, Chapter 3. The packet is sent using the TRANSFER_IN_REQUEST message with
OutputBufferSize set to zero.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TS_URB_HEADER

...

ConfigurationHandle

TS_USBD_INTERFACE_INFORMATION (variable)

...

TS_URB_HEADER (8 bytes): A TS_URB_HEADER as specified in section 2.2.9.1.1.

ConfigurationHandle (4 bytes): A 32-bit unsigned integer. The handle returned from the client

after it successfully completes a TS_URB_SELECT_CONFIGURATION request.

TS_USBD_INTERFACE_INFORMATION (variable): A TS_USBD_INTERFACE_INFORMATION
structure as specified in section 2.2.9.1.2.

2.2.9.4 TS_URB_PIPE_REQUEST

This packet represents the URB structure URB_PIPE_REQUEST, as specified in [MSFT-W2KDDK]
Volume 2, Part 4, Chapter 3. The packet is sent using the TRANSFER_IN_REQUEST message with
OutputBufferSize set to zero.

32 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TS_URB_HEADER

...

PipeHandle

TS_URB_HEADER (8 bytes): A TS_URB_HEADER as specified in section 2.2.9.1.1.

PipeHandle (4 bytes): A 32-bit unsigned integer. This is either the ConfigurationHandle field used
in TS_URB_SELECT_INTERFACE request or the ConfigurationHandle field returned by the client

with TS_URB_SELECT_CONFIGURATION_RESULT.

2.2.9.5 TS_URB_GET_CURRENT_FRAME_NUMBER

This packet represents the URB structure URB_GET_CURRENT_FRAME_NUMBER, as specified in

[MSFT-W2KDDK] Volume 2, Part 4, Chapter 3. The packet is sent using the TRANSFER_IN_REQUEST.
The OutputBufferSize field MUST be set to 0.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TS_URB_HEADER

...

TS_URB_HEADER (8 bytes): A TS_URB_HEADER as specified in section 2.2.9.1.1.

2.2.9.6 TS_URB_CONTROL_TRANSFER

This packet represents the URB structure URB_CONTROL_TRANSFER, as specified in [MSFT-W2KDDK]
Volume 2, Part 4, Chapter 3. If the TransferFlags field in URB_CONTROL_TRANSFER contains the
USBD_TRANSFER_DIRECTION_IN flag, the packet is sent using the TRANSFER_IN_REQUEST message
with OutputBufferSize set to TransferBufferLength as defined in URB_CONTROL_TRANSFER;
otherwise, the packet is sent using the TRANSFER_OUT_REQUEST message with OutputBufferSize

set to TransferBufferLength and OutputBuffer set to data in TransferBuffer or
TransferBufferMDL as defined in URB_CONTROL_TRANSFER.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TS_URB_HEADER

...

PipeHandle

TransferFlags

SetupPacket

33 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

...

TS_URB_HEADER (8 bytes): A TS_URB_HEADER as specified in section 2.2.9.1.1.

PipeHandle (4 bytes): A 32-bit unsigned integer. The handle returned from the client after it
successfully completes a TS_URB_SELECT_INTERFACE request.

TransferFlags (4 bytes): A 32-bit unsigned integer. This value is from the TransferFlags field in
URB_CONTROL_TRANSFER.

SetupPacket (8 bytes): An 8-byte array. This value is from the SetupPacket field in
URB_CONTROL_TRANSFER.

2.2.9.7 TS_URB_BULK_OR_INTERRUPT_TRANSFER

The packet represents the URB structure URB_BULK_OR_INTERRUPT_TRANSFER, as specified in
[MSFT-W2KDDK] Volume 2, Part 4, Chapter 3. If the TransferFlags field in

URB_BULK_OR_INTERRUPT_TRANSFER contains the USBD_TRANSFER_DIRECTION_IN flag, the
packet is sent using the TRANSFER_IN_REQUEST message with the OutputBufferSize field set to
TransferBufferLength as defined in URB_BULK_OR_INTERRUPT_TRANSFER; otherwise, the packet is

sent using the TRANSFER_OUT_REQUEST message with the OutputBufferSize field set to
TransferBufferLength and the OutputBuffer field set to the data in TransferBuffer or
TransferBufferMDL as defined in URB_BULK_OR_INTERRUPT_TRANSFER.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TS_URB_HEADER

...

PipeHandle

TransferFlags

TS_URB_HEADER (8 bytes): A TS_URB_HEADER as specified in section 2.2.9.1.1.

PipeHandle (4 bytes): A 32-bit unsigned integer. The handle returned from the client after it
successfully completes a TS_URB_SELECT_INTERFACE request.

TransferFlags (4 bytes): A 32-bit unsigned integer. This value is from the TransferFlags field in
URB_BULK_OR_INTERRUPT_TRANSFER.

2.2.9.8 TS_URB_ISOCH_TRANSFER

This packet represents the URB structure URB_ISOCH_TRANSFER, as specified in [MSFT-W2KDDK]

Volume 2, Part 4, Chapter 3. If the TransferFlags field in URB_ISOCH_TRANSFER contains the
USBD_TRANSFER_DIRECTION_IN flag, the packet is sent using the TRANSFER_IN_REQUEST message
with the OutputBufferSize field set to TransferBufferLength as defined in URB_ISOCH_TRANSFER;
otherwise, the packet is sent using the TRANSFER_OUT_REQUEST message with the
OutputBufferSize field set to TransferBufferLength and the OutputBuffer field set to the data in
TransferBuffer or TransferBufferMDL as defined in URB_ISOCH_TRANSFER.

34 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TS_URB_HEADER

...

PipeHandle

TransferFlags

StartFrame

NumberOfPackets

ErrorCount

IsoPacket (variable)

...

TS_URB_HEADER (8 bytes): A TS_URB_HEADER as specified in section 2.2.9.1.1.

PipeHandle (4 bytes): A 32-bit unsigned integer. The handle returned from the client after it
successfully completes a TS_URB_SELECT_INTERFACE request.

TransferFlags (4 bytes): A 32-bit unsigned integer. This value is from the TransferFlags field in
URB_ISOCH_TRANSFER.

StartFrame (4 bytes): A 32-bit unsigned integer. This value is from the StartFrame field in

URB_ISOCH_TRANSFER.

NumberOfPackets (4 bytes): A 32-bit unsigned integer. This value is from the NumberOfPackets
field in URB_ISOCH_TRANSFER.

ErrorCount (4 bytes): A 32-bit unsigned integer. This value is from the ErrorCount field in
URB_ISOCH_TRANSFER.

IsoPacket (variable): An array of USBD_ISO_PACKET_DESCRIPTOR structures. This value is from
the IsoPacket field in URB_ISOCH_TRANSFER.

2.2.9.9 TS_URB_CONTROL_DESCRIPTOR_REQUEST

This packet represents the URB structure URB_CONTROL_DESCRIPTOR_REQUEST, as specified in
[MSFT-W2KDDK] Volume 2, Part 4, Chapter 3. If the URB Function in
URB_CONTROL_DESCRIPTOR_REQUEST is URB_FUNCTION_GET_DESCRIPTOR_FROM_DEVICE,

URB_FUNCTION_GET_DESCRIPTOR_FROM_ENDPOINT, or
URB_FUNCTION_GET_DESCRIPTOR_FROM_INTERFACE, the packet is sent using the
TRANSFER_IN_REQUEST message with the OutputBufferSize field set to TransferBufferLength as

defined in URB_CONTROL_DESCRIPTOR_REQUEST; otherwise, the packet is sent using the
TRANSFER_OUT_REQUEST message with the OutputBufferSize field set to TransferBufferLength
and the OutputBuffer field set to the data in TransferBuffer or TransferBufferMDL as defined in
URB_CONTROL_DESCRIPTOR_REQUEST.

35 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TS_URB_HEADER

...

Index DescriptorType LanguageId

TS_URB_HEADER (8 bytes): A TS_URB_HEADER as specified in section 2.2.9.1.1.

Index (1 byte): A 8-bit unsigned integer. This value is from the Index field in
URB_CONTROL_DESCRIPTOR_REQUEST.

DescriptorType (1 byte): A 8-bit unsigned integer. This value is from the DescriptorType field in
URB_CONTROL_DESCRIPTOR_REQUEST.

LanguageId (2 bytes): A 16-bit unsigned integer. This value is from the LanguageId field in
URB_CONTROL_DESCRIPTOR_REQUEST.

2.2.9.10 TS_URB_CONTROL_FEATURE_REQUEST

This packet represents the URB structure URB_CONTROL_FEATURE_REQUEST, as specified in [MSFT-
W2KDDK] Volume 2, Part 4, Chapter 3. The packet is sent using the TRANSFER_IN_REQUEST
message with the OutputBufferSize field set to zero.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TS_URB_HEADER

...

FeatureSelector Index

TS_URB_HEADER (8 bytes): A TS_URB_HEADER as specified in section 2.2.9.1.1.

FeatureSelector (2 bytes): A 16-bit unsigned integer. This value is from the FeatureSelector field
in URB_CONTROL_FEATURE_REQUEST.

Index (2 bytes): A 16-bit unsigned integer. This value is from the Index field in
URB_CONTROL_FEATURE_REQUEST.

2.2.9.11 TS_URB_CONTROL_GET_STATUS_REQUEST

This packet represents the URB structure URB_CONTROL_GET_STATUS_REQUEST, as specified in

[MSFT-W2KDDK] Volume 2, Part 4, Chapter 3. The packet is sent using the TRANSFER_IN_REQUEST
message with the OutputBufferSize field set to TransferBufferLength as defined in
URB_CONTROL_GET_STATUS_REQUEST.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TS_URB_HEADER

36 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

...

Index Padding

TS_URB_HEADER (8 bytes): A TS_URB_HEADER as specified in section 2.2.9.1.1.

Index (2 bytes): A 16-bit unsigned integer. This value is from the Index field in
URB_CONTROL_GET_STATUS_REQUEST.

Padding (2 bytes): A 16-bit unsigned integer for padding. This field can be set to any value and
MUST be ignored upon receipt.

2.2.9.12 TS_URB_CONTROL_VENDOR_OR_CLASS_REQUEST

This packet represents the URB structure URB_CONTROL_VENDOR_OR_CLASS_REQUEST, as specified
in [MSFT-W2KDDK] Volume 2, Part 4, Chapter 3. If the TransferFlags field in

URB_CONTROL_VENDOR_OR_CLASS_REQUEST contains the USBD_TRANSFER_DIRECTION_IN flag,
the packet is sent using the TRANSFER_IN_REQUEST message with the OutputBufferSize field set to
TransferBufferLength as defined in URB_CONTROL_VENDOR_OR_CLASS_REQUEST; otherwise, the
packet is sent using the TRANSFER_OUT_REQUEST message with the OutputBufferSize field set to
TransferBufferLength and the OutputBuffer field set to the data in TransferBuffer or

TransferBufferMDL as defined in URB_CONTROL_VENDOR_OR_CLASS_REQUEST.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TS_URB_HEADER

...

TransferFlags

RequestTypeReservedBits Request Value

Index Padding

TS_URB_HEADER (8 bytes): A TS_URB_HEADER as specified in section 2.2.9.1.1.

TransferFlags (4 bytes): A 32-bit unsigned integer. This value is from the TransferFlags field in
URB_CONTROL_VENDOR_OR_CLASS_REQUEST.

RequestTypeReservedBits (1 byte): An 8-bit unsigned integer. This value is from the
RequestTypeReservedBits field in URB_CONTROL_VENDOR_OR_CLASS_REQUEST.

Request (1 byte): An 8-bit unsigned integer. If the operating system (OS) descriptor request has
been successfully retrieved the Request field is set to the value, see section 3.3.5.3.9 Processing

an OS descriptor request on how to retrieve an OS descriptor. Otherwise this value contains the
value from the Request field in URB_CONTROL_VENDOR_OR_CLASS_REQUEST.

Value (2 bytes): A 16-bit unsigned integer. This value is from the Value field in
URB_CONTROL_VENDOR_OR_CLASS_REQUEST.

Index (2 bytes): A 16-bit unsigned integer. This value is from the Index field in
URB_CONTROL_VENDOR_OR_CLASS_REQUEST.

37 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Padding (2 bytes): A 16-bit unsigned integer for padding. This field can be set to any value and
MUST be ignored upon receipt.

2.2.9.13 TS_URB_CONTROL_GET_CONFIGURATION_REQUEST

This packet represents the URB structure URB_CONTROL_GET_CONFIGURATION_REQUEST, as
specified in [MSFT-W2KDDK] Volume 2, Part 4, Chapter 3. The packet is sent using the
TRANSFER_IN_REQUEST message with the OutputBufferSize field set to TransferBufferLength as
defined in URB_CONTROL_GET_CONFIGURATION_REQUEST.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TS_URB_HEADER

...

TS_URB_HEADER (8 bytes): A TS_URB_HEADER as specified in section 2.2.9.1.1.

2.2.9.14 TS_URB_CONTROL_GET_INTERFACE_REQUEST

This packet represents the URB structure URB_CONTROL_GET_INTERFACE_REQUEST, as specified in

[MSFT-W2KDDK] Volume 2, Part 4, Chapter 3. The packet is sent using the TRANSFER_IN_REQUEST
message with the OutputBufferSize field set to TransferBufferLength as defined in
URB_CONTROL_GET_INTERFACE_REQUEST.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TS_URB_HEADER

...

Interface Padding

TS_URB_HEADER (8 bytes): A TS_URB_HEADER as specified in section 2.2.9.1.1.

Interface (2 bytes): A 16-bit unsigned integer. This value is from the Interface field in

URB_CONTROL_GET_INTERFACE_REQUEST.

Padding (2 bytes): A 16-bit unsigned integer for padding. This field can be set to any value and
MUST be ignored upon receipt.

2.2.9.15 TS_URB_OS_FEATURE_DESCRIPTOR_REQUEST

This packet represents the URB structure URB_OS_FEATURE_DESCRIPTOR_REQUEST, as specified in

[MSFT-W2KDDK] Volume 2, Part 4, Chapter 3. The packet is sent using the TRANSFER_IN_REQUEST
message with the OutputBufferSize field set to TransferBufferLength as defined in
URB_OS_FEATURE_DESCRIPTOR_REQUEST.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TS_URB_HEADER

38 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

...

Recipient Padding1 InterfaceNumber MS_PageIndex MS_FeatureDescriptorInd
ex

... Padding2

TS_URB_HEADER (8 bytes): A TS_URB_HEADER as specified in section 2.2.9.1.1.

Recipient (5 bits): A 5-bit field. This value is from the Recipient field in
URB_OS_FEATURE_DESCRIPTOR_REQUEST. When converting this value from the 8-bit field in

URB_OS_FEATURE_DESCRIPTOR_REQUEST into the 5-bit field in
TS_URB_OS_FEATURE_DESCRIPTOR_REQUEST, the highest 3 bits MUST be ignored. In an inverse
conversion, the highest 3 bits MUST be set to 0.

Padding1 (3 bits): A 3-bit field for padding. This field can be set to any value and MUST be ignored
upon receipt.

InterfaceNumber (1 byte): An 8-bit unsigned integer. This value is from the InterfaceNumber

field in URB_OS_FEATURE_DESCRIPTOR_REQUEST.

MS_PageIndex (1 byte): An 8-bit unsigned integer. This value is from the MS_PageIndex field in
URB_OS_FEATURE_DESCRIPTOR_REQUEST.

MS_FeatureDescriptorIndex (2 bytes): A 16-bit unsigned integer. This value is from the
MS_FeatureDescriptorIndex field in URB_OS_FEATURE_DESCRIPTOR_REQUEST.

Padding2 (3 bytes): A 24-bit unsigned integer for padding. This field can be set to any value and
MUST be ignored upon receipt.

2.2.9.16 TS_URB_CONTROL_TRANSFER_EX

This packet represents the URB structure URB_CONTROL_TRANSFER_EX, as specified in [MSFT-

W2KDDK] Volume 2, Part 4, Chapter 3. URB_CONTROL_TRANSFER_EX is same as
URB_CONTROL_TRANSFER except URB_CONTROL_TRANSFER_EX contains a new field called timeout

following the TransferBufferMDL field. The timeout field in URB_CONTROL_TRANSFER_EX is 32-bit
unsigned integer. If the TransferFlags field in URB_CONTROL_TRANSFER_EX contains the
USBD_TRANSFER_DIRECTION_IN flag, the packet is sent using the TRANSFER_IN_REQUEST message
with the OutputBufferSize field set to TransferBufferLength as defined in
URB_CONTROL_TRANSFER_EX; otherwise, the packet is sent using the TRANSFER_OUT_REQUEST
message with the OutputBufferSize field set to TransferBufferLength and the OutputBuffer field

set to the data in TransferBuffer or TransferBufferMDL as defined in
URB_CONTROL_TRANSFER_EX.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TS_URB_HEADER

...

PipeHandle

TransferFlags

Timeout

39 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

SetupPacket

...

TS_URB_HEADER (8 bytes): A TS_URB_HEADER as specified in section 2.2.9.1.1.

PipeHandle (4 bytes): A 32-bit unsigned integer. The handle returned from the client after it
successfully completes a TS_URB_SELECT_INTERFACE request.

TransferFlags (4 bytes): A 32-bit unsigned integer. This value is from the TransferFlags field in
URB_CONTROL_TRANSFER_EX.

Timeout (4 bytes): A 32-bit unsigned integer. This value is from the Timeout field in
URB_CONTROL_TRANSFER_EX. This value indicates the time, in milliseconds, before the request
times out. A value of zero indicates that there is no timeout for this request. The value of this field
is passed to the physical device.

SetupPacket (8 bytes): An array of 8-bytes. This value is from the SetupPacket field in
URB_CONTROL_TRANSFER_EX.

2.2.10 TS_URB_RESULT Structures

The TS_URB_RESULT structures sent in response to the TRANSFER_IN_REQUEST and

TRANSFER_OUT_REQUEST messages, are sent via the URB_COMPLETION or
URB_COMPLETION_NO_DATA messages. These messages contain the TS_URB_RESULT field, which is
described in this section.

All the fields in TS_URB_RESULT are the output fields defined in URB. For information on URB
definitions, see [MSFT-W2KDDK], Volume 2, Part 4, Chapter 3.

2.2.10.1 Common Structures

2.2.10.1.1 TS_URB_RESULT_HEADER

Every TS_URB_RESULT structure begins with a common header called TS_URB_RESULT_HEADER.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Size Padding

UsbdStatus

Size (2 bytes): A 16-bit unsigned integer. The size, in bytes, of the TS_URB_RESULT structure.

Padding (2 bytes): A 16-bit unsigned integer for padding. This field can be set to any value and

MUST be ignored upon receipt.

UsbdStatus (4 bytes): A 32-bit unsigned integer. This value represents the Status field of the
URB_STATUS structure as specified in [MSFT-W2KDDK], Volume 2, Part 4, Chapter 3.

2.2.10.1.2 TS_USBD_INTERFACE_INFORMATION_RESULT

The TS_USBD_INTERFACE_INFORMATION_RESULT structure is based on the
USBD_INTERFACE_INFORMATION structure as described in [MSFT-W2KDDK], Volume 2, Part 4,
Chapter 3.

40 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length InterfaceNumber AlternateSetting

Class SubClass Protocol Padding

InterfaceHandle

NumberOfPipes

Pipes (variable)

...

Length (2 bytes): A 16-bit unsigned integer. The size, in bytes, of the
TS_USBD_INTERFACE_INFORMATION_RESULT structure.

InterfaceNumber (1 byte): A 8-bit unsigned integer. This value represents the InterfaceNumber

field in USBD_INTERFACE_INFORMATION.

AlternateSetting (1 byte): A 8-bit unsigned integer. This value represents the AlternateSetting
field in USBD_INTERFACE_INFORMATION.

Class (1 byte): A 8-bit unsigned integer. This value represents the Class field in
USBD_INTERFACE_INFORMATION.

SubClass (1 byte): A 8-bit unsigned integer. This value represents the SubClass field in

USBD_INTERFACE_INFORMATION.

Protocol (1 byte): A 8-bit unsigned integer. This value represents the Protocol field in
USBD_INTERFACE_INFORMATION.

Padding (1 byte): A 8-bit unsigned integer for padding. This field can be set to any value and MUST
be ignored upon receipt.

InterfaceHandle (4 bytes): A 32-bit unsigned integer. This value represents the InterfaceHandle
field in USBD_INTERFACE_INFORMATION.

NumberOfPipes (4 bytes): A 32-bit unsigned integer. This value represents the NumberOfPipes
field in USBD_INTERFACE_INFORMATION. It also indicates the number of Pipes array elements
that are to follow.

Pipes (variable): An array of TS_USBD_PIPE_INFORMATION_RESULT structures. The number of
array elements is determined by the NumberOfPipes field.

2.2.10.1.3 TS_USBD_PIPE_INFORMATION_RESULT

The TS_USBD_PIPE_INFORMATION_RESULT is based on the USBD_PIPE_INFORMATION structure as
described in [MSFT-W2KDDK], Volume 2, Part 4, Chapter 3.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MaximumPacketSize EndpointAddress Interval

41 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

PipeType

PipeHandle

MaximumTransferSize

PipeFlags

MaximumPacketSize (2 bytes): A 16-bit unsigned integer. This value represents the
MaximumPacketSize field in USBD_PIPE_INFORMATION.

EndpointAddress (1 byte): A 8-bit unsigned integer. This value represents the EndpointAddress

field in USBD_PIPE_INFORMATION.

Interval (1 byte): A 8-bit unsigned integer. This value represents the Interval field in
USBD_PIPE_INFORMATION.

PipeType (4 bytes): A 32-bit unsigned integer. This value represents the PipeType field in
USBD_PIPE_INFORMATION.

PipeHandle (4 bytes): A 32-bit unsigned integer. This value represents the PipeHandle field in

USBD_PIPE_INFORMATION.

MaximumTransferSize (4 bytes): A 32-bit unsigned integer. This value represents the
MaximumTransferSize field in USBD_PIPE_INFORMATION.

PipeFlags (4 bytes): A 32-bit unsigned integer. This value represents the PipeFlags field in
USBD_PIPE_INFORMATION.

2.2.10.2 TS_URB_SELECT_CONFIGURATION_RESULT

This packet represents the result of the TRANSFER_IN_REQUEST with

TS_URB_SELECT_CONFIGURATION. The TS_URB_SELECT_CONFIGURATION_RESULT is sent via the
URB_COMPLETION_NO_DATA message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TS_URB_RESULT_HEADER

...

ConfigurationHandle

NumInterfaces

Interface (variable)

...

TS_URB_RESULT_HEADER (8 bytes): A TS_URB_RESULT_HEADER as specified in section

2.2.10.1.1.

42 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

ConfigurationHandle (4 bytes): A 32-bit unsigned integer. An opaque handle that identifies the
configuration described by the TS_URB_SELECT_CONFIGURATION operation.

NumInterfaces (4 bytes): A 32-bit unsigned integer. The number of Interface fields that are to
follow.

Interface (variable): An array of TS_USBD_INTERFACE_INFORMATION_RESULT structures as
specified in section 2.2.10.1.2. The number of elements is determined by the NumInterfaces
field.

2.2.10.3 TS_URB_SELECT_INTERFACE_RESULT

This packet represents the result of the TRANSFER_IN_REQUEST with TS_URB_SELECT_INTERFACE.
The TS_URB_SELECT_CONFIGURATION_RESULT structure is sent via the
URB_COMPLETION_NO_DATA message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TS_URB_RESULT_HEADER

...

Interface (variable)

...

TS_URB_RESULT_HEADER (8 bytes): A TS_URB_RESULT_HEADER as specified in section
2.2.10.1.1.

Interface (variable): A TS_USBD_INTERFACE_INFORMATION_RESULT structure as specified in
section 2.2.10.1.2.

2.2.10.4 TS_URB_GET_CURRENT_FRAME_NUMBER_RESULT

This packet represents the result of the TRANSFER_IN_REQUEST with

TS_URB_GET_CURRENT_FRAME_NUMBER. The TS_URB_GET_CURRENT_FRAME_NUMBER_RESULT
structure is sent via the URB_COMPLETION_NO_DATA message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TS_URB_RESULT_HEADER

...

FrameNumber

TS_URB_RESULT_HEADER (8 bytes): A TS_URB_RESULT_HEADER as specified in section
2.2.10.1.1.

FrameNumber (4 bytes): A 32-bit unsigned integer. The current frame number whose value is the

same as the one returned by IOCTL_TSUSBGD_IOCTL_USBDI_QUERY_BUS_TIME. Each frame
represents a 1 millisecond (ms) interval.

43 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

2.2.10.5 TS_URB_ISOCH_TRANSFER_RESULT

This packet represents the result of TRANSFER_IN_REQUEST or TRANSFER_OUT_REQUEST with
TS_URB_ISOCH_TRANSFER. The TS_URB_ISOCH_TRANSFER_RESULT structure is sent via the

URB_COMPLETION message if the result contains the data buffer to be sent back; otherwise, the
TS_URB_ISOCH_TRANSFER_RESULT is sent via the URB_COMPLETION_NO_DATA message.

0
1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TS_URB_RESULT_HEADER

...

StartFrame

NumberOfPackets

ErrorCount

IsoPacket (variable)

...

TS_URB_RESULT_HEADER (8 bytes): A TS_URB_RESULT_HEADER as specified in section
2.2.10.1.1.

StartFrame (4 bytes): A 32-bit unsigned integer. The resulting StartFrame value as specified in
URB_ISOCH_TRANSFER.

NumberOfPackets (4 bytes): A 32-bit unsigned integer. This value is the number of

URB_ISOCH_TRANSFER following the IsoPacket field.

ErrorCount (4 bytes): A 32-bit unsigned integer. The resulting ErrorCount value as described in
URB_ISOCH_TRANSFER.

IsoPacket (variable): The resulting array of USBD_ISO_PACKET_DESCRIPTOR structures as
described in URB_ISOCH_TRANSFER.

For the TRANSFER_IN_REQUEST operation, the IsoPacket field describes the data validity in the
stream of data that the physical device has generated. Each IsoPacket field describes a different
part of the data stream. If the IsoPacket field indicates an error, the part of the data stream it
describes does not contain valid data and the client SHOULD NOT send it to the server. When a
client constructs the OutputDataBuffer field for a URB_COMPLETION message that contains
TS_URB_ISOCH_TRANSFER_RESULT structure, the client MUST copy the data from the data
stream into the OutputDataBuffer field if and only if the corresponding IsoPacket indicates no

error.

2.2.11 USB_DEVICE_CAPABILITIES

The USB_DEVICE_CAPABILITIES structure defines the capabilities of a USB device.

44 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CbSize

UsbBusInterfaceVersion

USBDI_Version

Supported_USB_Version

HcdCapabilities

DeviceIsHighSpeed

NoAckIsochWriteJitterBufferSizeInMs

CbSize (4 bytes): A 32-bit unsigned integer. The byte size of this structure. This value MUST be 28.

UsbBusInterfaceVersion (4 bytes): A 32-bit unsigned integer. The USB version the device
supports.

Value USB version supported

0x00000000 0

0x00000001 1

0x00000002 2

USBDI_Version (4 bytes): A 32-bit unsigned integer. The highest USBDI version the device

supports. This value can be 0x00000500 or 0x00000600.

Supported_USB_Version (4 bytes): A 32-bit unsigned integer. The version of USB the device

supports. The value MUST be one of the following:

Name Value

USB 1.0 0x100

USB 1.1 0x110

USB 2.0 0x200

HcdCapabilities (4 bytes): A 32-bit unsigned integer. The host capabilities supported. This value

MUST always be zero.

DeviceIsHighSpeed (4 bytes): A 32-bit unsigned integer. This value represents the device speed.
0x00000000 if the device is full speed and 0x00000001 if the device is high speed. If
UsbBusInterfaceVersion is 0x00000000, DeviceIsHighSpeed MUST be 0x00000000. A high
speed device operates as a USB 2.0 device while a full speed device operates as a USB 1.1 device.

NoAckIsochWriteJitterBufferSizeInMs (4 bytes): A 32-bit unsigned integer. If the value is
nonzero, the client supports TS_URB_ISOCH_TRANSFER messages that do not expect

URB_COMPLETION messages; otherwise, if the value is zero, the client does not support
TS_URB_ISOCH_TRANSFER messages. If the value is not zero, the value represents the amount of

45 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

outstanding isochronous data the client expects from the server. If this value is nonzero, it MUST
be greater than or equal to 10 and less than or equal to 512.

2.2.12 USB IO Control Code

The IO_CONTROL messages are sent for each I/O request that the device driver sends to the USB
device. Each I/O request contains a value called the I/O control code. This I/O control code specifies
what operation is requested in the I/O request. This section describes the I/O control codes that the
server supports.

2.2.12.1 IOCTL_INTERNAL_USB_RESET_PORT

This USB IOCTL is specified in [MSFT-W2KDDK], Volume 2, Part 4, Chapter 1.

The server converts this IOCTL into an IO_CONTROL message with the IoControlCode field set to
IOCTL_INTERNAL_USB_RESET_PORT, the InputBufferSize field set to zero, and the

OutputBufferSize field set to zero.

In response to the IO_CONTROL message, an IOCONTROL_COMPLETION message is sent with the
final result of the operation and the OutputBufferSize field set to zero.

2.2.12.2 IOCTL_INTERNAL_USB_GET_PORT_STATUS

This USB IOCTL is specified in [MSFT-W2KDDK], Volume 2, Part 4, Chapter 1.

The server converts this IOCTL into an IO_CONTROL message with the IoControlCode field set to
IOCTL_INTERNAL_USB_GET_PORT_STATUS, the InputBufferSize field set to zero, and the
OutputBufferSize field set to 0x4.

In response to the IO_CONTROL message, an IOCONTROL_COMPLETION message is sent with the
final result of the operation. If the operation is successful, the client MUST set the OutputBufferSize

field to 0x4 and set the OutputBuffer field to the USB port status. If the operation is not successful,
the client MUST set the OutputBufferSize field to zero.

2.2.12.3 IOCTL_INTERNAL_USB_GET_HUB_COUNT

This USB IOCTL is specified in [MSFT-W2KDDK], Volume 2, Part 4, Chapter 1.

The server converts this IOCTL into an IO_CONTROL message with the IoControlCode field set to
IOCTL_INTERNAL_USB_GET_HUB_COUNT, the InputBufferSize field set to zero, and the
OutputBufferSize field set to 0x4.

In response to the IO_CONTROL message, an IOCONTROL_COMPLETION message is sent with the
final result of the operation. If the operation is successful, the client MUST set the OutputBufferSize
field to 0x4 and set the OutputBuffer field to the hub count. If the operation is not successful, the
client MUST set the OutputBufferSize field to zero.

2.2.12.4 IOCTL_INTERNAL_USB_CYCLE_PORT

This USB IOCTL is specified in [MSFT-W2KDDK], Volume 2, Part 4, Chapter 1.

The server converts this IOCTL into an IO_CONTROL message with the IoControlCode field set to

IOCTL_INTERNAL_USB_CYCLE_PORT, the InputBufferSize field set to zero, and the
OutputBufferSize field set to zero.

In response to the IO_CONTROL message, an IOCONTROL_COMPLETION message is sent with the
final result of the operation and the OutputBufferSize field set to zero.

46 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

2.2.12.5 IOCTL_INTERNAL_USB_GET_HUB_NAME

This USB IOCTL is specified in [MSFT-W2KDDK], Volume 2, Part 4, Chapter 1.

The server converts this IOCTL into an IO_CONTROL message with the IoControlCode field set to

IOCTL_INTERNAL_USB_GET_HUB_NAME, the InputBufferSize field set to zero, and the
OutputBufferSize field set to Parameters.DeviceIoControl.OutputBufferLength as described in
[MSFT-W2KDDK], Volume 2, Part 4, Chapter 1.

In response to the IO_CONTROL message, an IOCONTROL_COMPLETION message is sent with the
final result of the operation. If the operation is successful, the client MUST set the OutputBufferSize
field to length of the hub name and set the OutputBuffer field to the hub name. If the operation is
not successful, the client MUST set the OutputBufferSize field to zero.

2.2.12.6 IOCTL_INTERNAL_USB_GET_BUS_INFO

This USB IOCTL is specified in [MSFT-W2KDDK], Volume 2, Part 4, Chapter 1.

The server converts this IOCTL into an IO_CONTROL message with the IoControlCode field set to

IOCTL_INTERNAL_USB_GET_BUS_INFO, the InputBufferSize field set to zero, and the
OutputBufferSize field set to the size of USB_BUS_NOTIFICATION as specified in [MSFT-W2KDDK],
Volume 2, Part 4, Chapter 1.

In response to the IO_CONTROL message, an IOCONTROL_COMPLETION message is sent with the
final result of the operation. If the operation is successful, the client MUST set the OutputBufferSize
field to size of USB_BUS_NOTIFICATION and set the OutputBuffer field to USB_BUS_NOTIFICATION.
If the operation is not successful, the client MUST set the OutputBufferSize field to zero.

2.2.12.7 IOCTL_INTERNAL_USB_GET_CONTROLLER_NAME

This USB IOCTL is described in [MSFT-W2KDDK], Volume 2, Part 4, Chapter 1.

The server converts this IOCTL into an IO_CONTROL message with the IoControlCode field set to

IOCTL_INTERNAL_USB_GET_CONTROLLER_NAME, the InputBufferSize field set to zero, and the

OutputBufferSize field set to Parameters.Others.Argument2 as specified in [MSFT-W2KDDK],
Volume 2, Part 4, Chapter 1.

In response to the IO_CONTROL message, an IOCONTROL_COMPLETION message is sent with the
final result of the operation. If the operation is successful, the client MUST set the OutputBufferSize
field to size of controller name and set the OutputBuffer field to the controller name. If the operation
is not successful, the client MUST set the OutputBufferSize field to zero.

2.2.13 USB Internal IO Control Code

2.2.13.1 IOCTL_TSUSBGD_IOCTL_USBDI_QUERY_BUS_TIME

The IOCTL_TSUSBGD_IOCTL_USBDI_QUERY_BUS_TIME value is defined as 0x00224000. The
INTERNAL_IO_CONTROL message with IOCTL code

IOCTL_TSUSBGD_IOCTL_USBDI_QUERY_BUS_TIME is sent when a request to query the device's
current frame number as specified in [USB-SPC2.0] USB 2.0 Specification, section 10.2.3 Frame and
Microframe Generation is received.

The server converts the query current frame number call request into an INTERNAL_IO_CONTROL
message with IoControlCode set to IOCTL_TSUSBGD_IOCTL_USBDI_QUERY_BUS_TIME, the
InputBufferSize field is set to zero, and the OutputBufferSize field is set to 0x4.

https://go.microsoft.com/fwlink/?LinkId=207891

47 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

In response to the INTERNAL_IO_CONTROL message, an IOCONTROL_COMPLETION message is sent
with the final result of the operation. If the operation is successful, the client MUST set the

OutputBufferSize field to 0x4 and set the OutputBuffer field to a 32-bit unsigned integer that
represents the current frame number. Each frame represents a 1 ms interval. If the operation is not

successful, the client MUST set the OutputBufferSize field to zero.

48 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

3 Protocol Details

3.1 Common Details

The following state diagram illustrates the state transitions that both the client and the server go

through.

Figure 5: Client and server state transitions

Channel-connected event: This event signifies that the underlying transport channel is connected,
as specified in section 2.1.

Capability-exchange state: The client and the server are exchanging capabilities, as described in

section 1.3.1.1.

Exchange-completed event: Signifies that the capability exchange is completed, that is, the client
has sent a Channel Created message (see section 2.2.5.1).

Ready state: The protocol is ready to redirect new devices.

Add virtual channel event: As described in section 1.3.1.2, a new device has arrived on the client

and the protocol is ready to redirect it.

Add device event: This event signifies that the device is ready for I/O, as described in section
1.3.1.2.

Device I/O state: As described by section 1.3.1.3, the device is ready to exchange I/O.

49 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the

explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

RequestId: For each IO request that is sent to the client's actual USB device, the server generates a
unique RequestId for the request. The server sends the RequestId to the client in the
RequestId field of the IO_CONTROL or INTERNAL_IO_CONTROL message. If the request is to be
sent as a TRANSFER_IN_REQUEST message or a TRANSFER_OUT_REQUEST message, the

RequestId field is sent in the TsUrb field of the message. IO_CONTROL,
INTERNAL_IO_CONTROL, TRANSFER_IN_REQUEST, and TRANSFER_OUT_REQUEST messages are
classified as IO requests. A RequestId is unique among all four types of IO Requests. A
RequestId value has to be unique until the client sends the final result of the IO request that has
the RequestId value. Once this has happened, the RequestId value can be reused.

list of pending URB requests: For each TRANSFER_IN_REQUEST or TRANSFER_OUT_REQUEST

request that is sent to the client's USB device, the server stores in this list until the appropriate
completion message is received. The matching of replies to requests is based on the RequestId.

PipeHandle: an ID used to issue TS_URB_PIPE_REQUEST, TS_URB_CONTROL_TRANSFER,
TS_URB_BULK_OR_INTERRUPT_TRANSFER, TS_URB_ISOCH_TRANSFER or
TS_URB_CONTROL_TRANSFER_EX. The value is send by the client in
TS_USBD_PIPE_INFORMATION_RESULT structure in response to TS_URB_SELECT_INTERFACE
request.

3.1.1.1 Interface Manipulation Data Model

The common details of the abstract data model for the interface manipulation infrastructure are
specified in [MS-RDPEXPS] sections 3.1.1. The interface manipulation applies to the following fields:
InterfaceId, MessageId, and FunctionId.

3.1.2 Timers

A timer is started for every Query Device Text Message request. The timer expires in 30 seconds; if by
that time the reply has not arrived the client or server fails the request with the error

STATUS_TRANSACTION_TIMED_OUT and disconnects the virtual channel over which the request was
issued.<3>

3.1.3 Initialization

The dynamic virtual channel MUST be established, using the parameters specified in section 2.1,

before protocol operation commences.

3.1.4 Higher-Layer Triggered Events

None.

3.1.5 Processing Events and Sequencing Rules

Malformed packets are packets that do not adhere to the rules described in sections 2 and 3 with the
exception of sections 3.2.5 and 3.3.5. Out-of-sequence packets are packets that do not adhere to the
rules in sections 3.2.5 and 3.3.5. Malformed and out-of-sequence packets MUST be ignored by the

server and the client.

%5bMS-RDPEXPS%5d.pdf#Section_0231eff1ec784371b19c6f81e1cc55ee

50 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

3.1.5.1 Processing a Shared Message Header

The common rules for processing the SHARED_MSG_HEADER for the interface manipulation
infrastructure are defined in [MS-RDPEXPS] section 3.1.5.1.

3.1.5.2 Interface Manipulation

The common rules for processing the interface manipulation messages are defined in [MS-RDPEXPS]
section 3.1.5.2. Any interface, including the default one, MUST be released with an Interface Release
message if the side that has received it or owned it as default is finished sending messages over that

interface.

3.1.6 Timer Events

None.

3.1.7 Other Local Events

None.

3.2 Server Details

3.2.1 Abstract Data Model

The abstract data model is as specified in section 3.1.1.

3.2.2 Timers

None.

3.2.3 Initialization

Initialization is as specified in section 3.1.3.

3.2.4 Higher-Layer Triggered Events

None.

3.2.5 Processing Events and Sequencing Rules

3.2.5.1 Device Sink Interface

3.2.5.1.1 Processing an Add Virtual Channel Message

The structure and fields of the ADD_VIRTUAL_CHANNEL message are specified in section 2.2.4.1.

After receiving the ADD_VIRTUAL_CHANNEL message, the server makes a new instance of a dynamic
virtual channel for USB redirection.

If the server receives an invalid ADD_VIRTUAL_CHANNEL message, the server shall terminate the
dynamic virtual channel.

3.2.5.1.2 Processing a Add Device Message

%5bMS-RDPEXPS%5d.pdf#Section_0231eff1ec784371b19c6f81e1cc55ee
%5bMS-RDPEXPS%5d.pdf#Section_0231eff1ec784371b19c6f81e1cc55ee

51 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

The structure and fields of the ADD_DEVICE message are specified in section 2.2.4.2.

After receiving the ADD_DEVICE message, the server MUST create a remote device instance on the

server to represent the client-side physical device. The ADD_DEVICE message contains a unique USB
device interface ID to represent the client-side physical device. The server maintains this interface

ID and uses it to identify the client-side physical device when communicating to the client.

In the case of the server receiving a duplicate interface ID, the server MUST ignore the ADD_DEVICE
message. The original device with the same interface ID MUST not be affected by this ADD_DEVICE
message and continue to function with no interruption.

3.2.5.2 Channel Notification Interface

3.2.5.2.1 Sending a Channel Created Message

The structure and fields of the CHANNEL_CREATED message are specified in section 2.2.5.1.

The server sends the CHANNEL_CREATED message to the client to report the version of USB

redirection it supports.

3.2.5.2.2 Processing a Channel Created Message

The structure and fields of the CHANNEL_CREATED message are specified in section 2.2.5.1.

After receiving the CHANNEL_CREATED message, the server validates the client USB redirection
version. If the server does not support the client's USB redirection version, it MUST close the dynamic
virtual channel. If the server supports the client's USB redirection version, it MUST begin processing
the Device Sink interface messages.

3.2.5.3 USB Device Interface

3.2.5.3.1 Sending a Cancel Request Message

The structure and fields of the CANCEL_REQUEST message are specified in section 2.2.6.1.

The server sends the CANCEL_REQUEST message to request the client to stop processing the request
specified by the RequestId. The request with the given RequestId could already have been
completed by the client via the Request Completion Interface.

3.2.5.3.2 Sending a Register Request Callback Message

The structure and fields of the REGISTER_REQUEST_CALLBACK message are specified in section
2.2.6.2.

The server sends the REGISTER_REQUEST_CALLBACK message with the RequestCompletion field
present to the client in order to provide a unique Request Completion Interface for the client to use.
The server MUST send this message once for the same USB device and it MUST send this message
before sending an IO_CONTROL, INTERNAL_IO_CONTROL, TRANSFER_IN_REQUEST, or

TRANSFER_OUT_REQUEST message.

The server sends REGISTERS_REQUEST_CALLBACK message without the RequestCompletion field in

order to stop the client from sending any messages on the Request Completion Interface (section
2.2.7).

3.2.5.3.3 Sending a IO Control Message

The structure and fields of the IO_CONTROL message are specified in section 2.2.6.3.

52 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

The server sends the IO_CONTROL message to the client in order to forward an IO control request to
the physical device on the client-side.

3.2.5.3.4 Sending an Internal IO Control Message

The structure and fields of the INTERNAL_IO_CONTROL message are specified in section 2.2.6.4.

The server sends the INTERNAL_IO_CONTROL message to the client in order to forward an Internal IO
control request to the physical device on the client-side.

3.2.5.3.5 Sending a Query Device Text Message

The structure and fields of the QUERY_DEVICE_TEXT message are specified in section 2.2.6.5.

The server sends the QUERY_DEVICE_TEXT message to the client when it receives a request to query

the USB's device text from the system.

3.2.5.3.6 Processing a Query Device Text Response Message

The structure and fields of the QUERY_DEVICE_TEXT RSP message are specified in section 2.2.6.6.

After receiving the QUERY_DEVICE_TEXT_RSP message, the server MUST return the description
contained in the DeviceDescription field of the QUERY_DEVICE_TEXT_RSP message to the actual
application on behalf of which the QUERY_DEVICE_TEXT operation request was sent.

3.2.5.3.7 Sending a Transfer In Request Message

The structure and fields of the TRANSFER_IN_REQUEST message are specified in section 2.2.6.7.

The server sends the TRANSFER_IN_REQUEST message to the client in order to forward an URB to
the physical device on the client-side and the URB requests data from the device. The request is
stored in the list of pending URB requests until it is completed.

3.2.5.3.8 Sending a Transfer Out Request Message

The structure and fields of the TRANSFER_OUT_REQUEST message are specified in section 2.2.6.8.

The server sends the TRANSFER_OUT_REQUEST Message to the client in order to forward an URB to
the physical device on the client-side and the URB requests to write data to the device. The request is
stored in the list of pending URB requests until it is completed.

3.2.5.3.9 Sending a Retract Device Message

The structure and fields of the Retract Device message are specified in section 2.2.6.9.

The server sends the Retract Device message to the client when the server fails to start the device
due to group policy.

3.2.5.4 Request Completion Interface

3.2.5.4.1 IO Control Completion Message

The structure and fields of the IOCONTROL_COMPLETION message are specified in section 2.2.7.1.

After receiving the IOCONTROL_COMPLETION message, the server MUST use the RequestId specified
in the IOCONTROL_COMPLETION message to find the associated information stored after sending the
IO_CONTROL or INTERNAL_IO_CONTROL message; that information is stored in the HResult,

Information, OutputBufferSize, and OutputBuffer fields of the IOCONTROL_COMPLETION

53 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

message. With this information, the server completes the original request. The server MUST redirect
the result contained in the IOCONTROL_COMPLETION to the actual application that made the IO

Control or Internal IO Control operation request.

The server expects one and only one IOCONTROL_COMPLETION message for each IO_CONTROL or

INTERNAL_IO_CONTROL message it sends to the client. If the server receives more than one
IOCONTROL_COMPLETION message for an IO_CONTROL or INTERNAL_IO_CONTROL message, the
server SHOULD terminate the dynamic virtual channel.

If the server receives an IOCONTROL_COMPLETION message with an invalid RequestId, the server
SHOULD terminate the dynamic virtual channel.

If the OutputBufferSize field in the IOCONTROL_COMPLETION message is greater than the
OutputBufferSize field in the corresponding IO_CONTROL or INTERNAL_IO_CONTROL message, the

server SHOULD terminate the dynamic virtual channel.

3.2.5.4.2 URB Completion Message

The structure and fields of the URB_COMPLETION message are specified in section 2.2.7.2.

After receiving the URB_COMPLETION message, the server MUST use the RequestId specified in the
URB_COMPLETION message to find the associated information stored after sending the

TRANSFER_IN_REQUEST message from the list of pending URB requests; that information is stored
in the CTsUrbResult, TsUrbResult, HResult, OutputBufferSize, and OutputBuffer fields of the
URB_COMPLETION message. With this information, the server completes the original request. The
server MUST redirect the result contained in the URB_COMPLETION message to the actual application
that made the Transfer In operation request.

The server expects one and only one URB_COMPLETION message for each TRANSFER_IN_REQUEST
message it sends to the client, if the URB_COMPLETION message contains output data. If the server

receives more than one URB_COMPLETION message for a TRANSFER_IN_REQUEST message, the
server SHOULD terminate the dynamic virtual channel.

If the server receives an URB_COMPLETION message with an invalid RequestId, the server SHOULD

terminate the dynamic virtual channel.

If the OutputBufferSize field in the URB_COMPLETION message is greater than the
OutputBufferSize field in the corresponding TRANSFER_IN_REQUEST message, the server SHOULD
terminate the dynamic virtual channel.

3.2.5.4.3 URB Completion No Data Message

The structure and fields of the URB_COMPLETION_NO_DATA message are specified in section 2.2.7.3.

After receiving the URB_COMPLETION_NO_DATA message, the server MUST use the RequestId
specified in the URB_COMPLETION_NO_DATA message to find the associated information stored after
sending the TRANSFER_IN_REQUEST or TRANSFER_OUT_REQUEST message from the list of pending

URB requests; that information is stored in the CTsUrbResult, TsUrbResult, HResult, and
OutputBufferSize fields of the URB_COMPLETION_NO_DATA message. With this information, the
server completes the original request. The server MUST redirect the result contained in the

URB_COMPLETION_NO_DATA message to the actual application that made the Transfer In or Transfer
Out operation request.

The server expects one and only one URB_COMPLETION_NO_DATA message for each Transfer In
operation that generates no output data or each Transfer Out operation. If the server receives more

than one URB_COMPLETION_NO_DATA message for a TRANSFER_IN_REQUEST or
TRANSFER_OUT_REQUEST message, the server SHOULD terminate the dynamic virtual channel.

54 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

If the server receives an URB_COMPLETION_NO_DATA message with an invalid RequestId, the
server SHOULD terminate the dynamic virtual channel.

If the OutputBufferSize field in the URB_COMPLETION_NO_DATA message is not zero and the
URB_COMPLETION_NO_DATA message is the result of a Transfer In operation, the server SHOULD

terminate the dynamic virtual channel.

If the OutputBufferSize field in the URB_COMPLETION_NO_DATA message is greater than the
OutputBufferSize field in the corresponding TRANSFER_OUT_REQUEST message, the server SHOULD
terminate the dynamic virtual channel.

3.2.5.5 Interface Manipulation Exchange Capabilities Interface

3.2.5.5.1 Sending an Interface Manipulation Exchange Capabilities Request Message

The structure and fields of the RIM_EXCHANGE_CAPABILITY_REQUEST message are specified in
section 2.2.3.1.

The server MUST send this message when the USB redirection virtual channel is connected. This

message MUST be sent before the Channel created message (section 2.2.5.1).

3.2.5.5.2 Processing an Interface Manipulation Exchange Capabilities Response

Message

The structure and fields of the RIM_EXCHANGE_CAPABILITY_RESPONSE message are specified in
section 2.2.3.2.

On receiving this message, the server confirms that the client meets the minimum capabilities for
interface manipulation.

3.2.6 Timer Events

None.

3.2.7 Other Local Events

None.

3.3 Client Details

3.3.1 Abstract Data Model

The abstract data model is as specified in section 3.1.1.

3.3.2 Timers

None.

3.3.3 Initialization

Initialization is as specified in section 3.1.3.

3.3.4 Higher-Layer Triggered Events

None.

55 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

3.3.5 Processing Events and Sequencing Rules

3.3.5.1 Device Sink Interface

3.3.5.1.1 Sending a Add Virtual Channel Message

The structure and fields of the ADD_VIRTUAL_CHANNEL message are specified in section 2.2.4.1.

The client sends the ADD_VIRTUAL_CHANNEL message to server to request the server to create a new
instance of dynamic virtual channel for USB redirection. The client sends this message for every USB

device to be redirected. This isolates messages for each USB device in its own instance of a dynamic
virtual channel.

3.3.5.1.2 Sending a Add Device Message

The structure and fields of the ADD_DEVICE message are specified in section 2.2.4.2.

The client sends this ADD_DEVICE message to the server to redirect a USB device. The message
contains a unique InterfaceId that is used for I/O requests.

3.3.5.2 Channel Notification Interface

3.3.5.2.1 Sending a Channel Created Message

The structure and fields of the CHANNEL_CREATED message are specified in section 2.2.5.1.

The client sends the CHANNEL_CREATED message to the server to report the version of the USB
redirection it supports.

3.3.5.2.2 Processing a Channel Created Message

The structure and fields of the CHANNEL_CREATED message are specified in section 2.2.5.1.

After receiving the CHANNEL_CREATED message, the client validates the server USB redirection

version. If the client does not support the server's USB redirection version, the client MUST close the
dynamic virtual channel. If the client supports the server's USB redirection version, it MUST begin
sending Device Sink interface messages.

3.3.5.3 USB Device Interface

3.3.5.3.1 Processing a Cancel Request Message

The structure and fields of the CANCEL_REQUEST message are specified in section 2.2.6.1.

After receiving the CANCEL_REQUEST message, the client MUST attempt to stop processing the
request identified by the RequestId field in the CANCEL_REQUEST message. If the current request
has not been completed it MUST be canceled. If the request has been completed, the client MUST

ignore this CANCEL_REQUEST message.

3.3.5.3.2 Processing a Register Request Callback Message

The structure and fields of the REGISTER_REQUEST_CALLBACK message are specified in section
2.2.6.2.

After receiving the REGISTER_REQUEST_CALLBACK message, if the RequestCompletion field is
present, the client MUST use the InterfaceId value from that when sending final results of IO

56 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

requests received via the IO_CONTROL, INTERNAL_IO_CONTROL, TRANSFER_IN_REQUEST, or
TRANSFER_OUT_REQUEST message.

If the server sends REGISTERS_REQUEST_CALLBACK message without the RequestCompletion field,
the client MUST stop immediately sending any messages on the Request Completion Interface (section

2.2.7).

3.3.5.3.3 Processing an IO Control Message

The structure and fields of the IO_CONTROL message are specified in section 2.2.6.3.

After receiving the IO_CONTROL message, the client MUST forward the request to the physical device
by retrieving the IOCTL code and input/output buffers from IoControlCode, InputBuffer,
InputBufferSize and OutputBufferSize fields from the message. The output buffer parameter in

the forwarded IOCTL is allocated with the size of OutputBufferSize field. When the physical device
completes the request, the client MUST send the result of the request to the server via the
IOCONTROL_COMPLETION message and the RequestId field in the IOCONTROL_COMPLETION
message MUST match the RequestId in the IO_CONTROL message.

The IO_CONTROL message contains the OutputBufferSize field. This indicates the maximum amount
of data the client can send to the server when sending the final result of this request. If the physical

device returns more data than the OutputBufferSize field specifies, the client MUST terminate the
dynamic virtual channel.

3.3.5.3.4 Processing an Internal IO Control Message

The structure and fields of the INTERNAL_IO_CONTROL message are specified in section 2.2.6.4.

After receiving the INTERNAL_IO_CONTROL message, the client MUST forward the request to the
physical device by using the same rules as specified in section 3.3.5.3.3. When the physical device

completes the request, the client MUST send the result of the request to the server via the
IOCONTROL_COMPLETION message and the RequestId field in the IOCONTROL_COMPLETION
message MUST match the RequestId in the INTERNAL_IO_CONTROL message.

The INTERNAL_IO_CONTROL message contains OutputBufferSize field. This indicates the maximum
amount of data the client can send to the server when sending the final result of this request. If the
physical device returns more data than the OutputBufferSize field specifies, the client MUST
terminate the dynamic virtual channel.

3.3.5.3.5 Processing a Query Device Text Message

The structure and fields of the QUERY_DEVICE_TEXT message are specified in section 2.2.6.5.

After receiving the QUERY_DEVICE_TEXT message, the client forwards the request to the physical
device. When the physical device completes the request, the client sends the result of the request to
the server via QUERY_DEVICE_TEXT_RSP message and the RequestId field in the message MUST
match the RequestId in the QUERY_DEVICE_TEXT message.

3.3.5.3.6 Processing a Transfer In Request Message

The structure and fields of the TRANSFER_IN_REQUEST message are specified in section 2.2.6.7.

After receiving the TRANSFER_IN_REQUEST message, the client MUST forward the request to the
physical device. When the physical device completes the request, the client MUST send the result of
the request to the server via URB_COMPLETION or URB_COMPLETION_NO_DATA message and the

RequestId field in the message MUST match the RequestId in the TRANSFER_IN_REQUEST
message.

57 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

If TRANSFER_IN_REQUEST results in data to be returned to the server, the client MUST use the
URB_COMPLETION message to send the result. If TRANSFER_IN_REQUEST results in no data to be

returned to the server, the client MUST use the URB_COMPLETION_NO_DATA message to send the
result and the OutputBufferSize field MUST be zero.

The TRANSFER_IN_REQUEST message contains OutputBufferSize field. This indicates the maximum
amount of data the client can send to the server when sending the final result of this request via
URB_COMPLETION. If the physical device returns more data than the OutputBufferSize field
specifies, the client MUST terminate the dynamic virtual channel.

3.3.5.3.7 Processing a Transfer Out Request Message

The structure and fields of the TRANSFER_OUT_REQUEST message are specified in section 2.2.6.8.

After receiving the TRANSFER_OUT_REQUEST message, the client forwards the request to the physical
device. When the physical device completes the request, the client sends the result of the request to
the server via URB_COMPLETION_NO_DATA message and the RequestId field in the message MUST
match the RequestId in the TRANSFER_OUT_REQUEST message.

The TRANSFER_OUT_REQUEST message contains the OutputBufferSize field. This indicates the
amount of data the server is sending to the device. When the client sends

URB_COMPLETION_NO_DATA message to the server to report the final result of the
TRANSFER_OUT_REQUEST, the OutputBufferSize value MUST NOT be greater than the
OutputBufferSize value in TRANSFER_OUT_REQUEST message.

3.3.5.3.8 Processing a Retract Device Message

The structure and fields of the RETRACT_DEVICE message are specified in section 2.2.6.9.

After receiving the RETRACT_DEVICE message, the client SHOULD terminate the dynamic channel and

stop redirecting the physical USB device.

3.3.5.3.9 Processing an OS Descriptor request

Special processing on the client is needed when processing
TS_URB_OS_FEATURE_DESCRIPTOR_REQUEST. The following describes how to get the OS-specific
string descriptor.

To retrieve a device's OS string descriptor, send a standard GET_DESCRIPTOR control request to the

device. For details on how to construct GET_DESCRIPTOR control requests, see [USB-SPC2.0] section
9.4 "Standard Device Requests." The request must have the format shown in the following table.

bmRequestType bRequest wValue wIndex wLength Data

1000 0000B GET_DESCRIPTOR 0x03EE 0x0000 0x12 Returned string

bmRequestType: IN. This 1-byte field is divided into three parts that indicate the data transfer
direction, the descriptor type, and the recipient. To retrieve a USB string descriptor,
bmRequestType MUST be set to 10000000B (0x80).

bRequest: IN. This field specifies the request type. Set this field to the standard GET_DESCRIPTOR
request code.

wValue: IN. This field is split into two parts for GET_DESCRIPTOR requests.

 The high byte contains the descriptor type. To retrieve a string descriptor, set this byte to
0x03.

https://go.microsoft.com/fwlink/?LinkId=207891

58 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 The low byte contains the descriptor's string index, which indicates where the descriptor is
stored in firmware. To retrieve an OS string descriptor, set this byte to 0xEE.

wIndex: IN. This field specifies the descriptor's language ID. It must be set to 0 for OS string
descriptors.

wLength: IN. This field specifies the length of the buffer, in bytes, that is to receive the string
descriptor. The device is to respond to values ranging from 0x02-0xFF. Set wLength to 0x12 for
OS string descriptors.

Data: OUT. This field is a pointer to the buffer that will receive the requested descriptor. The format of
the descriptor is described in the following table.

For more details on how to send control requests, see [USB-SPC2.0].

If a device does not have a valid string descriptor at 0xEE, it responds with a Stall or Request

Error.<4>

If an OS string descriptor request is successful, the device returns the descriptor in the request's Data

field. Version 1.00 of the OS string descriptor has a fixed length of 18 bytes, with a structure as shown
in the following table. This format MUST be used by all OS string descriptors.

Length Type Signature MS Vendor Code Pad

0x14 0x03 MSFT100 unsigned byte 0x00

Length: An unsigned byte and MUST be set to 0x14.

Type: An unsigned byte and MUST be set to 0x03.

Signature: A Unicode string and MUST be set to "MSFT100".

MS Vendor Code: An unsigned byte, it will be used to retrieve associated feature descriptors.

Pad: An unsigned byte and MUST be set to 0x00.

When processing the Signature and MS VendorCode fields:

 The Signature field contains a Unicode character array that identifies the descriptor as an OS
string descriptor and includes the version number. For version 1.00, this array must be set to
"MSFT100" (0x4D00 0x5300 0x4600 0x5400 0x3100 0x3000 0x3000).

 The MS VendorCode field is used to retrieve the associated feature descriptors. This code is used

as Request field in TS_URB_CONTROL_VENDOR_OR_CLASS_REQUEST section 2.2.9.12.

Because independent hardware vendors can store string descriptors at any index, there is no
guarantee that a string descriptor stored at 0xEE is an OS string descriptor.<5>

3.3.5.4 Request Completion Interface

3.3.5.4.1 IO Control Completion Message

The structure and fields of the IOCONTROL_COMPLETION message are specified in section 2.2.7.1.

The client MUST use the RequestId received in the corresponding IO_CONTROL or
INTERNAL_IO_CONTROL message when constructing this reply. The result of the IO Control or
Internal IO Control operation performed, along with all data read, MUST be returned in the

IOCONTROL_COMPLETION message.

59 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

The client MUST send one and only one IOCONTROL_COMPLETION message with matching
RequestId for each IO_CONTROL or Internal IO Control message it receives from the server.

If the physical device returns more data than the OutputBufferSize field specifies in the
IO_CONTROL or INTERNAL_IO_CONTROL message, the client SHOULD terminate the dynamic virtual

channel.

3.3.5.4.2 URB Completion Message

The structure and fields of the URB_COMPLETION message are specified in section 2.2.7.2.

The client MUST use the RequestId received in the corresponding TRANSFER_IN_REQUEST message
when constructing this reply. The result of the Transfer In operation performed, along with all data
read, MUST be returned in the URB_COMPLETION message. If the Transfer In operation generated no

data, the client MUST use URB_COMPLETION_NO_DATA message instead.

The client MUST send one and only one URB_COMPLETION message if data is generated, or one and
only one URB_COMPLETION_NO_DATA message if no data is generated, for each

TRANSFER_IN_REQUEST message it receives from the server.

If the physical device returns more data than the OutputBufferSize field specifies in the
TRANSFER_IN_REQUEST message, the client SHOULD terminate the dynamic virtual channel.

3.3.5.4.3 URB Completion No Data Message

The structure and fields of the URB_COMPLETION_NO_DATA message are specified in section 2.2.7.3.

The client MUST use the RequestId received in the corresponding TRANSFER_IN_REQUEST message
if the Transfer In operation generates no data or Transfer Out operation when constructing this reply.
The result of the Transfer In operation that generates no data or Transfer Out operation performed
MUST be returned in the URB_COMPLETION_NO_DATA message. If the Transfer In operation

generates return data, the client MUST use the URB_COMPLETION message instead.

The client MUST send one and only one URB_COMPLETION message with matching RequestId value

if data is generated, or one and only one URB_COMPLETION_NO_DATA message with matching
RequestId value if no data is generated, for each TRANSFER_IN_REQUEST message it receives from
the server.

The client MUST send one and only one URB_COMPLETION_NO_DATA message for each
TRANSFER_OUT_REQUEST message it receives from the server.

3.3.5.5 Interface Manipulation Exchange Capabilities Interface Messages

3.3.5.5.1 Processing an Interface Manipulation Exchange Capabilities Request

Message

The structure and fields of the RIM_EXCHANGE_CAPABILITY_REQUEST message are specified in
section 2.2.3.1.

On receiving a RIM_EXCHANGE_CAPABILITY_REQUEST message, the client MUST send an
RIM_EXCHANGE_CAPABILITY_RESPONSE message.

3.3.5.5.2 Sending an Interface Manipulation Exchange Capabilities Response Message

The structure and fields of the RIM_EXCHANGE_CAPABILITY_RESPONSE message are specified in
section 2.2.3.2.

This message is sent in response to the RIM_EXCHANGE_CAPABILITY_REQUEST message.

60 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

3.3.6 Timer Events

None.

3.3.7 Other Local Events

None.

61 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

4 Protocol Examples

4.1 Server Data Interface Annotations

4.1.1 Channel Created Message

After a new channel is established, both the server and the client send the CHANNEL_CREATED
message to each other. The message specifies the MajorVersion, MinorVersion, and Capability of
the server for USB redirection. The following sequence shows the CHANNEL_CREATED message for a

MajorVersion of 0x00000001, MinorVersion of 0x00000000, and Capability of 0x00000000.

 Channel Created
 ChannelName = URBDRC,24,server to client
 00000000 02 00 00 40 00 00 00 00-00 01 00 00 01 00 00 00 ...@............
 00000010 00 00 00 00 00 00 00 00-

 02 00 00 40 -> Interface Id = 0x00000002 | mask STREAM_ID_PROXY (0x40000000)
 00 00 00 00 -> Message Id = 0x00000000
 00 01 00 00 -> CHANNEL_CREATED = 0x00000100
 01 00 00 00 -> Major Version = 0x00000001
 00 00 00 00 -> Minor Version = 0x00000000
 00 00 00 00 -> Capability = 0x00000000

 Channel Created
 ChannelName = URBDRC,24,client to server
 00000000 03 00 00 40 00 00 00 00-00 01 00 00 01 00 00 00 ...@............
 00000010 00 00 00 00 00 00 00 00-

 03 00 00 40 -> Interface Id = 0x00000003 | mask STREAM_ID_PROXY (0x40000000)
 00 00 00 00 -> Message Id = 0x00000000
 00 01 00 00 -> CHANNEL_CREATED = 0x00000100
 01 00 00 00 -> Major Version = 0x00000001
 00 00 00 00 -> Minor Version = 0x00000000
 00 00 00 00 -> Capability = 0x00000000

4.1.2 Internal IO Control Message

The server sends the INTERNAL_IO_CONTROL message to the client in response to the request from
the system specified in section 2.2.13. The INTERNAL_IO_CONTROL message described in this section
is for IOCTL_TSUSBGD_IOCTL_USBDI_QUERY_BUS_TIME IO control code. There is no input
parameter for this IO control code and the output parameter size is 0x00000004 bytes.

 IO Control
 ChannelName = URBDRC,0x1c,server to client
 00000000 00 00 00 40 00 00 00 00-03 01 00 00 00 40 22 00
 00000010 00 00 00 00 04 00 00 00-00 00 00 00

 00 00 00 40 -> USB Device Interface Id = 0x00000000 | mask STREAM_ID_PROXY (0x40000000)
 00 00 00 00 -> Message Id = 0x00000000
 03 01 00 00 -> INTERNAL_IO_CONTROL = 0x00000103
 00 40 22 00 -> IO control code = 0x00224000 (IOCTL_TSUSBGD_IOCTL_USBDI_QUERY_BUS_TIME)
 00 00 00 00 -> Input Buffer Size = 0x00000000
 04 00 00 00 -> Output Buffer Size = 0x00000004
 00 00 00 00 -> Request Id = 0x00000000

62 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

4.1.3 IO Control Completion Message

In response to the INTERNAL_IO_CONTROL message described in section 4.1.2, the client sends the
IOCONTROL_COMPLETION message (section 2.2.7.1) to the server containing the result returned from

the physical device.

 IO Control Completion
 ChannelName = URBDRC,0x20,client to server
 00000000 00 00 00 40 00 00 00 00-00 01 00 00 00 00 00 00
 00000010 00 00 00 00 04 00 00 00-04 00 00 00 53 4b 5f 1a
 00 00 00 40 -> RequestCompletion Interface Id = 0x00000000 | mask STREAM_ID_PROXY
(0x40000000)

 00 00 00 00 -> Message Id = 0x00000000
 00 01 00 00 -> IO_CONTROL_COMPLETION = 0x00000100
 00 00 00 00 -> Request Id = 0x00000000 (from Internal IO Control message)
 00 00 00 00 -> HResult = 0x00000000
 04 00 00 00 -> Information = 0x00000004
 04 00 00 00 -> Output Buffer Size = 0x00000004
 53 4b 5f 1a -> Output Buffer Data = 0x1a5f4b53 (Current Frame)

4.1.4 Transfer In Request Message

The server sends the TRANSFER_IN_REQUEST message to the client in response to the request from
the system specified in section 2.2.9. The TRANSFER_IN_REQUEST described in this section is for URB
function URB_FUNCTION_BULK_OR_INTERRUPT_TRANSFER that reads 0x32 bytes from the physical
device.

 Transfer In
 ChannelName = URBDRC,0x24,server to client
 00000000 00 00 00 40 00 00 00 00-05 01 00 00 10 00 00 00
 00000010 10 00 09 00 02 00 00 00-02 00 ff ff 03 00 00 00
 00000020 32 00 00 00

 00 00 00 40 -> USB Device Interface Id = 0x00000000 | mask STREAM_ID_PROXY (0x40000000)
 00 00 00 00 -> Message Id = 0x00000000
 05 01 00 00 -> TRANSFER_IN_REQUEST = 0x00000105
 10 00 00 00 -> TS_URB size = 0x00000010
 10 00 -> TS_URB CbSize = 0x0010
 09 00 -> TS_URB Function = 0x0009 (TS_URB_FUNCTION_BULK_OR_INTERRUPT_TRANSFER)
 02 00 00 00 -> TS_URB Request Id = 0x00000002
 02 00 ff ff -> TS_URB PipeHandle = 0xffff0002
 03 00 00 00 -> TS_URB TransferFlag = 0x00000003
 32 00 00 00 -> Output Buffer Size = 0x00000032

4.1.5 URB Completion Message

In response to the TRANSFER_IN_REQUEST message described in section 4.1.3, the client sends the
URB_COMPLETION message to the server containing the result returned from the physical device.

 URB Completion
 ChannelName = URBDRC,0x56,client to server
 00000000 00 00 00 40 00 00 00 00-01 01 00 00 02 00 00 00
 00000010 08 00 00 00 08 00 09 00-00 00 00 00 00 00 00 00
 00000020 32 00 00 00 00 00 00 00-01 00 00 00 02 00 00 00
 00000030 03 00 00 00 04 00 00 00-05 00 00 00 06 00 00 00
 00000040 07 00 00 00 08 00 00 00-09 00 00 00 0a 00 00 00
 00000050 0b 00 00 00 00 00

63 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 00 00 00 40 -> RequestCompletion Interface Id = 0x00000000 | mask STREAM_ID_PROXY
(0x40000000)

 00 00 00 00 -> Message Id = 0x00000000
 01 01 00 00 -> URB_COMPLETION = 0x00000101
 02 00 00 00 -> Request Id = 0x00000002
 08 00 00 00 -> TS_URB_RESULT Size = 0x0008
 08 00 -> TS_URB_RESULT CbSize = 0x0008
 09 00 -> filler
 00 00 00 00 -> TS_URB_RESULT USBDStatus = 0x00000000
 00 00 00 00 -> HResult = 0x00000000
 32 00 00 00 -> Output Buffer Size = 0x00000032
 00 00 00 00 -> Output Data
 01 00 00 00
 02 00 00 00
 03 00 00 00
 04 00 00 00
 05 00 00 00
 06 00 00 00
 07 00 00 00
 08 00 00 00
 09 00 00 00
 0a 00 00 00
 0b 00 00 00
 00 00

64 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

5 Security

5.1 Security Considerations for Implementers

There are no security considerations for the Remote Desktop Protocol: USB Devices Virtual Channel

Extension messages because all traffic is secured by the underlying RDP core protocol. For information
about the security-related mechanisms that are implemented in the RDP core protocol, see [MS-
RDPBCGR] section 5.

5.2 Index of Security Parameters

None.

%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c

65 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

 Windows 7 operating system with Service Pack 1 (SP1)

 Windows Server 2008 R2 operating system with Service Pack 1 (SP1)

 Windows 8 operating system

 Windows Server 2012 operating system

 Windows 8.1 operating system

 Windows Server 2012 R2 operating system

 Windows 10 operating system

 Windows Server 2016 operating system

 Windows Server operating system

 Windows Server 2019 operating system

 Windows Server 2022 operating system

 Windows 11 operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed

using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 2.2.1: The server-side implementation of this protocol is applicable to Windows 7
Enterprise operating system with Service Pack 1 (SP1), Windows 7 Ultimate operating system with
Service Pack 1 (SP1), Windows 8 Enterprise operating system, Windows Server 2012, Windows 8.1

Enterprise, Windows Server 2012 R2, Windows Server 2016, Windows Server operating system, and
Windows Server 2019. The client-side implementation of this protocol is applicable to Windows 7 SP1,
Windows Server 2008 R2 SP1, Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012
R2, and Windows 10.

<2> Section 2.2.9.1.3: The field MaximumTransferSize of USBD_PIPE_INFORMATION is ignored.

<3> Section 3.1.2: The timer is implemented only in Windows 8.

<4> Section 3.3.5.3.9: If a device responds with a Request Error, Windows issues a single-ended
Zero Reset. This ensures that the device recovers if it enters an unknown state.

<5> Section 3.3.5.3.9: To verify that the request has retrieved an OS string descriptor on Windows:

1. Examine the Signature value to ensure that it corresponds to a valid Windows OS descriptor
string signature. If Signature does contain a valid signature, Windows does not parse the
descriptor any further. Version 1.00 has only one valid signature: 'MSFT100'.

66 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

2. Extract the version number from Signature and verify that the descriptor has the correct length
for that version.

67 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

7 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

 A document revision that incorporates changes to interoperability requirements.

 A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description Revision class

6 Appendix A: Product Behavior Updated for this version of Windows Client. Major

mailto:dochelp@microsoft.com

68 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

8 Index

A

Abstract data model
 client 54
 interface manipulation 49
 overview (section 3.1.1 49, section 3.3.1 54)
 server 50
 interface manipulation 49
 overview (section 3.1.1 49, section 3.2.1 50)
ADD_DEVICE packet 18
ADD_VIRTUAL_CHANNEL packet 17
Applicability 13

C

CANCEL_REQUEST packet 20
Capability negotiation 13
Change tracking 67

Channel notification interface 19
Channel Notification Interface message 19
Channel setup sequence - overview 11
CHANNEL_CREATED message example 61
CHANNEL_CREATED packet 19
Client
 abstract data model 54
 interface manipulation 49
 overview (section 3.1.1 49, section 3.3.1 54)
 higher-layer triggered events (section 3.1.4 49,

section 3.3.4 54)
 initialization (section 3.1.3 49, section 3.3.3 54)
 local events (section 3.1.7 50, section 3.3.7 60)
 message processing
 ADD_DEVICE message - sending 55
 ADD_VIRTUAL_CHANNEL message - sending 55
 CANCEL_REQUEST message - processing 55
 CHANNEL_CREATED message - processing 55
 CHANNEL_CREATED message - sending 55
 interface manipulation 50
 INTERNAL_IO_CONTROL message - processing

56
 IO_CONTROL message - processing 56
 IOCONTROL_COMPLETION message 58
 QUERY_DEVICE_TEXT message - processing 56
 REGISTER_REQUEST_CALLBACK message -

processing 55
 RETRACT_DEVICE message - processing 57
 RIM_EXCHANGE_CAPABILITY_REQUEST

message 59
 RIM_EXCHANGE_CAPABILITY_RESPONSE

message 59
 shared message header - processing 50
 TRANSFER_IN_REQUEST message - processing

56
 TRANSFER_OUT_REQUEST message - processing

57
 URB_COMPLETION ETION message 59
 URB_COMPLETION_NO_DATA message 59
 other local events 60
 overview 48
 sequencing rules
 ADD_DEVICE message - sending 55

 ADD_VIRTUAL_CHANNEL message - sending 55
 CANCEL_REQUEST message - processing 55
 CHANNEL_CREATED message - processing 55
 CHANNEL_CREATED message - sending 55
 interface manipulation 50
 INTERNAL_IO_CONTROL message - processing

56
 IO_CONTROL message - processing 56
 IOCONTROL_COMPLETION message 58
 QUERY_DEVICE_TEXT message - processing 56
 REGISTER_REQUEST_CALLBACK message -

processing 55
 RETRACT_DEVICE message - processing 57
 RIM_EXCHANGE_CAPABILITY_REQUEST

message 59
 RIM_EXCHANGE_CAPABILITY_RESPONSE

message 59
 shared message header - processing 50
 TRANSFER_IN_REQUEST message - processing

56
 TRANSFER_OUT_REQUEST message - processing

57
 URB_COMPLETION message 59
 URB_COMPLETION_NO_DATA message 59
 timer events (section 3.1.6 50, section 3.3.6 60)
 timers (section 3.1.2 49, section 3.3.2 54)

D

Data model - abstract
 client 54
 interface manipulation 49
 overview (section 3.1.1 49, section 3.3.1 54)
 server 50
 interface manipulation 49
 overview (section 3.1.1 49, section 3.2.1 50)
Device sink interface 17
Device Sink Interface message 17

E

Examples
 CHANNEL_CREATED message 61
 INTERNAL_IO_CONTROL message 61
 IOCONTROL_COMPLETION message 62
 TRANSFER_IN_REQUEST message 62
 URB_COMPLETION message 62

F

Fields - vendor-extensible 13

G

Glossary 8

H

Higher-layer triggered events
 client (section 3.1.4 49, section 3.3.4 54)
 server (section 3.1.4 49, section 3.2.4 50)

69 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

I

I/O sequence - overview 12
Implementer - security considerations 64
Index of security parameters 64
Informative references 9
Initialization
 client (section 3.1.3 49, section 3.3.3 54)
 server (section 3.1.3 49, section 3.2.3 50)
Interface manipulation 16
Interface manipulation exchange capabilities

interface 16
Interface Manipulation Exchange Capabilities

Interface message 16
Interface Manipulation message 16
INTERNAL_IO_CONTROL message example 61

INTERNAL_IO_CONTROL packet 22
Introduction 8
IO_CONTROL packet 21
IOCONTROL_COMPLETION message example 62
IOCONTROL_COMPLETION packet 26

L

Local events
 client (section 3.1.7 50, section 3.3.7 60)
 server (section 3.1.7 50, section 3.2.7 54)

M

Message processing
 client
 ADD_DEVICE message - sending 55
 ADD_VIRTUAL_CHANNEL message - sending 55
 CANCEL_REQUEST message - processing 55
 CHANNEL_CREATED message - processing 55
 CHANNEL_CREATED message - sending 55
 interface manipulation 50
 INTERNAL_IO_CONTROL message - processing

56
 IO_CONTROL message - processing 56
 IOCONTROL_COMPLETION message 58
 QUERY_DEVICE_TEXT message - processing 56
 REGISTER_REQUEST_CALLBACK message -

processing 55
 RETRACT_DEVICE message - processing 57
 RIM_EXCHANGE_CAPABILITY_REQUEST

message 59
 RIM_EXCHANGE_CAPABILITY_RESPONSE

message 59

 shared message header - processing 50
 TRANSFER_IN_REQUEST message - processing

56
 TRANSFER_OUT_REQUEST message - processing

57
 URB_COMPLETION message 59
 URB_COMPLETION_NO_DATA message 59
 server
 ADD_DEVICE message - processing 50
 ADD_VIRTUAL_CHANNEL message - processing

50
 CANCEL_REQUEST message - sending 51
 CHANNEL_CREATED message - processing 51
 CHANNEL_CREATED message - sending 51

 interface manipulation 50
 INTERNAL_IO_CONTROL message - sending 52
 IO_CONTROL message - sending 51
 IOCONTROL_COMPLETION message 52
 QUERT_DEVICE_TEXT_RSP message -

processing 52
 QUERT_DEVICE_TEXT_RSP message - sending

52
 REGISTER_REQUEST_CALLBACK message -

sending 51
 Retract Device message - sending 52
 RIM_EXCHANGE_CAPABILITY_REQUEST

message - sending 54
 RIM_EXCHANGE_CAPABILITY_RESPONSE

message - processing 54
 shared message header - processing 50
 TRANSFER_IN_REQUEST message - sending 52
 TRANSFER_OUT_REQUEST message - sending

52
 URB_COMPLETION message 53
 URB_COMPLETION_NO_DATA message 53
Messages
 Channel Notification Interface 19

 Device Sink Interface 17
 Interface Manipulation 16
 Interface Manipulation Exchange Capabilities

Interface 16
 Request Completion Interface 25
 Shared Message Header (SHARED_MSG_HEADER)

14
 SHARED_MSG_HEADER 14
 transport 14
 TS_URB Structures 28
 TS_URB_RESULT Structures 39
 USB Device Interface 20
 USB IO Control Code 45
 USB_DEVICE_CAPABILITIES 43
 USB_RETRACT_REASON Constants 28

N

New device sequence - overview 11
Normative references 9

O

Other local events
 client 60
 server 54
Overview
 channel setup sequence 11
 I/O sequence 12
 new device sequence 11
 synopsis 10
 USB Redirection Virtual Channel Protocol 11
Overview (synopsis) 10

P

Parameters - security index 64
Preconditions 13
Prerequisites 13
Product behavior 65

Q

70 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

QUERY_DEVICE_TEXT packet 23
QUERY_DEVICE_TEXT_RSP packet 23

R

References 9
 informative 9
 normative 9
REGISTER_REQUEST_CALLBACK packet 21
Relationship to other protocols 12
Request Completion Interface 25
Request Completion Interface message 25
RETRACT_DEVICE packet 25
RIM_EXCHANGE_CAPABILITY_REQUEST packet 16
RIM_EXCHANGE_CAPABILITY_RESPONSE packet 17

S

Security
 implementer considerations 64
 parameter index 64
Sequencing rules
 client
 ADD_DEVICE message - sending 55
 ADD_VIRTUAL_CHANNEL message - sending 55
 CANCEL_REQUEST message - processing 55
 CHANNEL_CREATED message - processing 55
 CHANNEL_CREATED message - sending 55
 interface manipulation 50
 INTERNAL_IO_CONTROL message - processing

56
 IO_CONTROL message - processing 56
 IOCONTROL_COMPLETION message 58
 QUERY_DEVICE_TEXT message - processing 56
 REGISTER_REQUEST_CALLBACK message -

processing 55
 RETRACT_DEVICE message - processing 57
 RIM_EXCHANGE_CAPABILITY_REQUEST

message 59
 RIM_EXCHANGE_CAPABILITY_RESPONSE

message 59
 shared message header - processing 50
 TRANSFER_IN_REQUEST message - processing

56
 TRANSFER_OUT_REQUEST message - processing

57
 URB_COMPLETION message 59
 URB_COMPLETION_NO_DATA message 59
 server
 ADD_DEVICE message - processing 50
 ADD_VIRTUAL_CHANNEL message - processing

50
 CANCEL_REQUEST message - sending 51
 CHANNEL_CREATED message - processing 51
 CHANNEL_CREATED message - sending 51
 interface manipulation 50

 INTERNAL_IO_CONTROL message - sending 52
 IO_CONTROL message - sending 51
 IOCONTROL_COMPLETION message 52
 QUERT_DEVICE_TEXT_RSP message -

processing 52
 QUERT_DEVICE_TEXT_RSP message - sending

52

 REGISTER_REQUEST_CALLBACK message -
sending 51

 Retract Device message - sending 52
 RIM_EXCHANGE_CAPABILITY_REQUEST

message - sending 54
 RIM_EXCHANGE_CAPABILITY_RESPONSE

message - processing 54
 shared message header - processing 50
 TRANSFER_IN_REQUEST message - sending 52
 TRANSFER_OUT_REQUEST message - sending

52
 URB_COMPLETION message 53
 URB_COMPLETION_NO_DATA message 53
Server
 abstract data model 50
 interface manipulation 49
 overview (section 3.1.1 49, section 3.2.1 50)
 higher-layer triggered events (section 3.1.4 49,

section 3.2.4 50)
 initialization (section 3.1.3 49, section 3.2.3 50)
 local events (section 3.1.7 50, section 3.2.7 54)
 message processing
 ADD_DEVICE message - processing 50

 ADD_VIRTUAL_CHANNEL message - processing
50

 CANCEL_REQUEST message - sending 51
 CHANNEL_CREATED message - processing 51
 CHANNEL_CREATED message - sending 51
 interface manipulation 50
 INTERNAL_IO_CONTROL message - sending 52
 IO_CONTROL message - sending 51
 IOCONTROL_COMPLETION message 52
 QUERT_DEVICE_TEXT_RSP message -

processing 52
 QUERT_DEVICE_TEXT_RSP message - sending

52
 REGISTER_REQUEST_CALLBACK message -

sending 51
 Retract Device message - sending 52
 RIM_EXCHANGE_CAPABILITY_REQUEST

message - sending 54
 RIM_EXCHANGE_CAPABILITY_RESPONSE

message - processing 54
 shared message header - processing 50
 TRANSFER_IN_REQUEST message - sending 52
 TRANSFER_OUT_REQUEST message - sending

52
 URB_COMPLETION message 53
 URB_COMPLETION_NO_DATA message 53
 other local events 54
 overview 48
 sequencing rules
 ADD_DEVICE message - processing 50
 ADD_VIRTUAL_CHANNEL message - processing

50
 CANCEL_REQUEST message - sending 51
 CHANNEL_CREATED message - processing 51
 CHANNEL_CREATED message - sending 51
 interface manipulation 50
 INTERNAL_IO_CONTROL message - sending 52
 IO_CONTROL message - sending 51
 IOCONTROL_COMPLETION message 52
 QUERT_DEVICE_TEXT_RSP message -

processing 52

71 / 71

[MS-RDPEUSB] - v20210625
Remote Desktop Protocol: USB Devices Virtual Channel Extension
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 QUERT_DEVICE_TEXT_RSP message - sending
52

 REGISTER_REQUEST_CALLBACK message -
sending 51

 Retract Device message - sending 52
 RIM_EXCHANGE_CAPABILITY_REQUEST

message - sending 54
 RIM_EXCHANGE_CAPABILITY_RESPONSE

message - processing 54
 shared message header - processing 50
 TRANSFER_IN_REQUEST message - sending 52
 TRANSFER_OUT_REQUEST message - sending

52
 URB_COMPLETION message 53
 URB_COMPLETION_NO_DATA message 53
 timer events (section 3.1.6 50, section 3.2.6 54)
 timers (section 3.1.2 49, section 3.2.2 50)
Shared Message Header (SHARED_MSG_HEADER)

message 14
SHARED_MSG_HEADER 14
SHARED_MSG_HEADER packet 14
Standards assignments 13

T

Timer events
 client (section 3.1.6 50, section 3.3.6 60)
 server (section 3.1.6 50, section 3.2.6 54)
Timers
 client (section 3.1.2 49, section 3.3.2 54)
 server (section 3.1.2 49, section 3.2.2 50)
Tracking changes 67
TRANSFER_IN_REQUEST message example 62
TRANSFER_IN_REQUEST packet 24
TRANSFER_OUT_REQUEST packet 24
Transport 14
Triggered events
 client (section 3.1.4 49, section 3.3.4 54)
 server (section 3.1.4 49, section 3.2.4 50)
Triggered events - higher-layer
 client 54
 server 50
TS_URB structures 28
TS_URB Structures message 28
TS_URB_BULK_OR_INTERRUPT_TRANSFER packet

33
TS_URB_CONTROL_DESCRIPTOR_REQUEST packet

34
TS_URB_CONTROL_FEATURE_REQUEST packet 35
TS_URB_CONTROL_GET_CONFIGURATION_REQUEST

packet 37
TS_URB_CONTROL_GET_INTERFACE_REQUEST

packet 37
TS_URB_CONTROL_GET_STATUS_REQUEST packet

35
TS_URB_CONTROL_TRANSFER packet 32
TS_URB_CONTROL_TRANSFER_EX packet 38
TS_URB_CONTROL_VENDOR_OR_CLASS_REQUEST

packet 36
TS_URB_GET_CURRENT_FRAME_NUMBER packet 32
TS_URB_GET_CURRENT_FRAME_NUMBER_RESULT

packet 42

TS_URB_HEADER packet 28
TS_URB_ISOCH_TRANSFER packet 33
TS_URB_ISOCH_TRANSFER_RESULT packet 43

TS_URB_OS_FEATURE_DESCRIPTOR_REQUEST
packet 37

TS_URB_PIPE_REQUEST packet 31
TS_URB_RESULT structures 39
TS_URB_RESULT Structures message 39
TS_URB_RESULT_HEADER packet 39
TS_URB_SELECT_CONFIGURATION packet 30
TS_URB_SELECT_CONFIGURATION_RESULT packet

41
TS_URB_SELECT_INTERFACE packet 31
TS_URB_SELECT_INTERFACE_RESULT packet 42
TS_USBD_INTERFACE_INFORMATION packet 29
TS_USBD_INTERFACE_INFORMATION_RESULT

packet 39
TS_USBD_PIPE_INFORMATION packet 30
TS_USBD_PIPE_INFORMATION_RESULT packet 40

U

URB_COMPLETION message example 62
URB_COMPLETION packet 26
URB_COMPLETION_NO_DATA packet 27
USB device interface 20
USB Device Interface message 20
USB IO control code 45
USB IO Control Code message 45
USB Redirection Virtual Channel Protocol - overview

11
USB_DEVICE_CAPABILITIES message 43
USB_DEVICE_CAPABILITIES packet 43
USB_RETRACT_REASON Constants message 28
UsbRetractReason_BlockedByPolicy 28

V

Vendor-extensible fields 13
Versioning 13

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Protocol Overview (Synopsis)
	1.3.1 USB Devices Virtual Channel Protocol
	1.3.1.1 Channel Setup Sequence
	1.3.1.2 New Device Sequence
	1.3.1.3 I/O Sequence

	1.4 Relationship to Other Protocols
	1.5 Prerequisites and Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendors-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Shared Message Header (SHARED_MSG_HEADER)
	2.2.2 Interface Manipulation
	2.2.3 Interface Manipulation Exchange Capabilities Interface
	2.2.3.1 Interface Manipulation Exchange Capabilities Request (RIM_EXCHANGE_CAPABILITY_REQUEST)
	2.2.3.2 Interface Manipulation Exchange Capabilities Response (RIM_EXCHANGE_CAPABILITY_RESPONSE)

	2.2.4 Device Sink Interface
	2.2.4.1 Add Virtual Channel Message (ADD_VIRTUAL_CHANNEL)
	2.2.4.2 Add Device Message (ADD_DEVICE)

	2.2.5 Channel Notification Interface
	2.2.5.1 Channel Created Message (CHANNEL_CREATED)

	2.2.6 USB Device Interface
	2.2.6.1 Cancel Request Message (CANCEL_REQUEST)
	2.2.6.2 Register Request Callback Message (REGISTER_REQUEST_CALLBACK)
	2.2.6.3 IO Control Message (IO_CONTROL)
	2.2.6.4 Internal IO Control Message (INTERNAL_IO_CONTROL)
	2.2.6.5 Query Device Text Message (QUERY_DEVICE_TEXT)
	2.2.6.6 Query Device Text Response Message (QUERY_DEVICE_TEXT_RSP)
	2.2.6.7 Transfer In Request (TRANSFER_IN_REQUEST)
	2.2.6.8 Transfer Out Request (TRANSFER_OUT_REQUEST)
	2.2.6.9 Retract Device (RETRACT_DEVICE)

	2.2.7 Request Completion Interface
	2.2.7.1 IO Control Completion (IOCONTROL_COMPLETION)
	2.2.7.2 URB Completion (URB_COMPLETION)
	2.2.7.3 URB Completion No Data (URB_COMPLETION_NO_DATA)

	2.2.8 USB_RETRACT_REASON Constants
	2.2.9 TS_URB Structures
	2.2.9.1 Common Structures
	2.2.9.1.1 TS_URB_HEADER
	2.2.9.1.2 TS_USBD_INTERFACE_INFORMATION
	2.2.9.1.3 TS_USBD_PIPE_INFORMATION

	2.2.9.2 TS_URB_SELECT_CONFIGURATION
	2.2.9.3 TS_URB_SELECT_INTERFACE
	2.2.9.4 TS_URB_PIPE_REQUEST
	2.2.9.5 TS_URB_GET_CURRENT_FRAME_NUMBER
	2.2.9.6 TS_URB_CONTROL_TRANSFER
	2.2.9.7 TS_URB_BULK_OR_INTERRUPT_TRANSFER
	2.2.9.8 TS_URB_ISOCH_TRANSFER
	2.2.9.9 TS_URB_CONTROL_DESCRIPTOR_REQUEST
	2.2.9.10 TS_URB_CONTROL_FEATURE_REQUEST
	2.2.9.11 TS_URB_CONTROL_GET_STATUS_REQUEST
	2.2.9.12 TS_URB_CONTROL_VENDOR_OR_CLASS_REQUEST
	2.2.9.13 TS_URB_CONTROL_GET_CONFIGURATION_REQUEST
	2.2.9.14 TS_URB_CONTROL_GET_INTERFACE_REQUEST
	2.2.9.15 TS_URB_OS_FEATURE_DESCRIPTOR_REQUEST
	2.2.9.16 TS_URB_CONTROL_TRANSFER_EX

	2.2.10 TS_URB_RESULT Structures
	2.2.10.1 Common Structures
	2.2.10.1.1 TS_URB_RESULT_HEADER
	2.2.10.1.2 TS_USBD_INTERFACE_INFORMATION_RESULT
	2.2.10.1.3 TS_USBD_PIPE_INFORMATION_RESULT

	2.2.10.2 TS_URB_SELECT_CONFIGURATION_RESULT
	2.2.10.3 TS_URB_SELECT_INTERFACE_RESULT
	2.2.10.4 TS_URB_GET_CURRENT_FRAME_NUMBER_RESULT
	2.2.10.5 TS_URB_ISOCH_TRANSFER_RESULT

	2.2.11 USB_DEVICE_CAPABILITIES
	2.2.12 USB IO Control Code
	2.2.12.1 IOCTL_INTERNAL_USB_RESET_PORT
	2.2.12.2 IOCTL_INTERNAL_USB_GET_PORT_STATUS
	2.2.12.3 IOCTL_INTERNAL_USB_GET_HUB_COUNT
	2.2.12.4 IOCTL_INTERNAL_USB_CYCLE_PORT
	2.2.12.5 IOCTL_INTERNAL_USB_GET_HUB_NAME
	2.2.12.6 IOCTL_INTERNAL_USB_GET_BUS_INFO
	2.2.12.7 IOCTL_INTERNAL_USB_GET_CONTROLLER_NAME

	2.2.13 USB Internal IO Control Code
	2.2.13.1 IOCTL_TSUSBGD_IOCTL_USBDI_QUERY_BUS_TIME

	3 Protocol Details
	3.1 Common Details
	3.1.1 Abstract Data Model
	3.1.1.1 Interface Manipulation Data Model

	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.5 Processing Events and Sequencing Rules
	3.1.5.1 Processing a Shared Message Header
	3.1.5.2 Interface Manipulation

	3.1.6 Timer Events
	3.1.7 Other Local Events

	3.2 Server Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.5 Processing Events and Sequencing Rules
	3.2.5.1 Device Sink Interface
	3.2.5.1.1 Processing an Add Virtual Channel Message
	3.2.5.1.2 Processing a Add Device Message

	3.2.5.2 Channel Notification Interface
	3.2.5.2.1 Sending a Channel Created Message
	3.2.5.2.2 Processing a Channel Created Message

	3.2.5.3 USB Device Interface
	3.2.5.3.1 Sending a Cancel Request Message
	3.2.5.3.2 Sending a Register Request Callback Message
	3.2.5.3.3 Sending a IO Control Message
	3.2.5.3.4 Sending an Internal IO Control Message
	3.2.5.3.5 Sending a Query Device Text Message
	3.2.5.3.6 Processing a Query Device Text Response Message
	3.2.5.3.7 Sending a Transfer In Request Message
	3.2.5.3.8 Sending a Transfer Out Request Message
	3.2.5.3.9 Sending a Retract Device Message

	3.2.5.4 Request Completion Interface
	3.2.5.4.1 IO Control Completion Message
	3.2.5.4.2 URB Completion Message
	3.2.5.4.3 URB Completion No Data Message

	3.2.5.5 Interface Manipulation Exchange Capabilities Interface
	3.2.5.5.1 Sending an Interface Manipulation Exchange Capabilities Request Message
	3.2.5.5.2 Processing an Interface Manipulation Exchange Capabilities Response Message

	3.2.6 Timer Events
	3.2.7 Other Local Events

	3.3 Client Details
	3.3.1 Abstract Data Model
	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Higher-Layer Triggered Events
	3.3.5 Processing Events and Sequencing Rules
	3.3.5.1 Device Sink Interface
	3.3.5.1.1 Sending a Add Virtual Channel Message
	3.3.5.1.2 Sending a Add Device Message

	3.3.5.2 Channel Notification Interface
	3.3.5.2.1 Sending a Channel Created Message
	3.3.5.2.2 Processing a Channel Created Message

	3.3.5.3 USB Device Interface
	3.3.5.3.1 Processing a Cancel Request Message
	3.3.5.3.2 Processing a Register Request Callback Message
	3.3.5.3.3 Processing an IO Control Message
	3.3.5.3.4 Processing an Internal IO Control Message
	3.3.5.3.5 Processing a Query Device Text Message
	3.3.5.3.6 Processing a Transfer In Request Message
	3.3.5.3.7 Processing a Transfer Out Request Message
	3.3.5.3.8 Processing a Retract Device Message
	3.3.5.3.9 Processing an OS Descriptor request

	3.3.5.4 Request Completion Interface
	3.3.5.4.1 IO Control Completion Message
	3.3.5.4.2 URB Completion Message
	3.3.5.4.3 URB Completion No Data Message

	3.3.5.5 Interface Manipulation Exchange Capabilities Interface Messages
	3.3.5.5.1 Processing an Interface Manipulation Exchange Capabilities Request Message
	3.3.5.5.2 Sending an Interface Manipulation Exchange Capabilities Response Message

	3.3.6 Timer Events
	3.3.7 Other Local Events

	4 Protocol Examples
	4.1 Server Data Interface Annotations
	4.1.1 Channel Created Message
	4.1.2 Internal IO Control Message
	4.1.3 IO Control Completion Message
	4.1.4 Transfer In Request Message
	4.1.5 URB Completion Message

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

